Темы --> Информатика --> Алгоритмы --> Перебор --> Комбинаторные структуры
    Размещения с повторениями(11 задач)
    Перестановки(20 задач)
    Сочетания(5 задач)
    Разбиения(9 задач)
    Разные комбинаторные структуры(17 задач)
    Генерация по номеру(2 задач)
---> 4 задач <---
    1999(7 задач)
    2000(8 задач)
    2001(8 задач)
    2002(9 задач)
    2003(9 задач)
    2004(10 задач)
    2005(10 задач)
    2006(10 задач)
    2007(11 задач)
    2008(10 задач)
    2009(11 задач)
    2010(11 задач)
    2011(11 задач)
    2012(11 задач)
    2013(11 задач)
    2014(11 задач)
    2015(11 задач)
    2016(11 задач)
Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Необходимо по заданному автомобильному номеру (3 буквы и 3 цифры в формате БЦЦЦББ) подсчитать и вывести все возможные номера, получаемые перестановкой этих букв и цифр.

При расследовании дорожно-транспортных происшествий часто возникают проблемы с розыском автомобилей, водители которых покинули место происшествия.

Получение свидетельских показаний – непростая работа. Ситуация осложняется тем, что очень часто свидетели могут только приблизительно вспомнить номер автомобиля. При этом с большой вероятностью опрашиваемый может перепутать порядок цифр или букв в номере.

По полученному от свидетеля происшествия номеру, подсчитайте, сколько различных номеров может получиться из него перестановкой букв и/или цифр, а также выведите все такие номера.

Напомним, что автомобильные номера в России состоят из трех букв и трех цифр, упорядоченных следующим образом: буква, три цифры, затем две буквы. Фрагмент номера, который идентифицирует регион, в котором зарегистрирован автомобиль, мы будем игнорировать.

В номере могут использоваться следующие буквы: «A», «B», «C», «E», «H», «K», «M», «O», «P», «T», «X», «Y» (эти буквы имеют схожие по написанию аналоги как в русском, так и в латинском алфавите). В этой задаче во входных данных будут использоваться буквы латинского алфавита.

Входные данные

На вход программы поступает  одна строка, которая представляет собой корректный автомобильный номер.

Выходные данные

В первой строке  выведите число k – количество номеров, которые могут получиться из заданного перестановкой букв и/или цифр.

В последующих k строках выведите все такие номера в произвольном порядке.

Примеры
Входные данные
X772KX
Выходные данные
9
X277XK
X277KX
X727XK
X727KX
X772XK
X772KX
K277XX
K727XX
K772XX
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Дано выражение p1/p2/.../pn. Требуется определить, сколько различных значений и целых значений оно может принимать при всевозможных расстановках скобок.

Известно, что сложение и умножение являются ассоциативными операциями. Это значит, что значение выражений вида \(a_1\) + \(a_2\) +...+ \(a_n\) и \(a_1\) . \(a_2\) . ... . \(a_n\) не зависит от порядка выполнения в них действий и, следовательно, не меняется при произвольной расстановке в этих выражениях скобок.

В отличие от сложения и умножения, деление – операция не ассоциативная. Так, значение выражения вида \(a_1\)/\(a_2\)/ ... /\(a_n\) может меняться при расстановке в нем скобок.

Рассмотрим выражение вида

\(p_1\)/\(p_2\)/ ... /\(p_n\),

где все \(p_i\) – простые числа (не обязательно различные). Найдите количество возможных значений, которые может принять указанное выражение после расстановки в нем скобок, а также количество целых чисел среди этих значений. Например, выражение 3/2/2 после расстановки скобок может принять два значения: 3/4 = (3/2)/2 и 3 = 3/(2/2).

В первой строке вводится число \(n\) ( 1\( \le\)n\( \le\)200). Следующая строка содержат \(n\) натуральных чисел – \(p_1\), \(p_2\),..., \(p_n\). Все числа \(p_i\) простые и не превосходят \(10^4\).

Выходные данные

В первой строке выведите количество возможных значений, которые может принять выражение \(p_1\)/\(p_2\)/ ... /\(p_n\) при заданных \(p_i\) после расстановки в нем скобок. Во второй строке выведите количество целых чисел среди этих значений.

Примеры
Входные данные
3
3 2 2
Выходные данные
2
1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В компании QQQ работает n человек. Очередной проект компании состоит из m независимых частей. Управляющий компании оценил время, которое требуется для выполнения каждой из частей проекта (предполагается, что это время не зависит от того, кто будет выполнять эту часть). После чего он некоторым образом распределил все m частей между n работниками. В результате оказалось, что некоторым из работников потребуется потратить на выполнение своей работы больше времени, чем другим (поскольку им досталась более объемная работа).

Поэтому управляющий решил улучшить распределение работ следующим образом: выбрать двух различных работников и выбрать одну из частей проекта, назначенную первому работнику, и одну из частей, назначенную второму. После этого часть проекта, назначенную первому работнику, назначить второму, а часть, назначенную второму, назначить первому. Если в результате этой операции максимум из времен выполнения работы первым и вторым работниками уменьшился, то такую операцию назовем оптимизирующей.

Например, пусть проект состоит из пяти частей со временами выполнения 3,6,4,8,2, и в компании есть три работника. Пусть распределение работ выглядит следующим образом: первый работник части 1 и 2 (суммарное время 3 + 6 = 9), второй работник часть 4 (суммарное время 8) и третий работник части 3 и 5 (суммарное время 4 + 2 = 6). Тогда если первое задание (назначенное первому работнику) назначить третьему, а пятое задание (назначенное третьему) назначить первому, то у первого работника суммарное время станет равно 6 + 2 = 8, а у третьего 3 + 4 = 7. Поскольку max(9,6) > max(8,7), то эта операция будет оптимизирующей.

Вам дано число работников в компании, число частей в проекте, время, необходимое на выполнение каждой из частей проекта и распределение частей по работникам. Требуется посчитать число различных возможных оптимизирующих операций в данном распределении работ.

Входные данные

Первая строка входного файла содержит два натуральных числа n и m (1 ≤ n,m ≤ 105) число работников в компании и число частей в проекте соответственно. Вторая строка содержит m натуральных чисел i-ое число равно времени выполнения i-ой части проекта (части проекта нумеруются, начиная с 1). Времена выполнения частей не превосходят 109. Далее идут n строк, описывающих распределение частей по работникам. Каждая строка содержит описание частей проекта, которые получил соответствующий работник. Описание состоит из числа частей, которые достались работнику, и их номеров.

Выходные данные

В выходной файл выведите искомое число оптимизирующих операций.

Примеры
Входные данные
3 5
3 6 4 8 2
2 1 2
1 4
2 3 5
Выходные данные
2
Входные данные
5 13
1 2 7 5 8 7 5 4 1 5 1 5 7
3 1 2 3
2 4 5
2 6 7
3 8 9 10
3 11 12 13
Выходные данные
5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Маленький Вася очень любит поезда. На день рождения ему подарили игрушечную железную дорогу. В комплект к железной дороге входит поезд, состоящий из \(n\) вагонов, пронумерованных числами от 1 до \(n\).

Любимым занятием Васи стала сортировка поездов с использованием специального сортировочного тупика.

Справа к тупику подъезжает поезд, составленный из всех \(n\) вагонов. Затем вагоны по одному загоняются в сортировочный тупик и выгоняются из него налево. Васе нравится, если ему удается отсортировать поезд с помощью сортировочного тупика — добиться того, чтобы слева от тупика вагоны были расположены по порядку от 1 до \(n\).

Например, пусть в исходном поезде 4 вагона, которые следуют в порядке 3, 1, 2, 4. Его можно отсортировать следующим образом. Загоняем вагон 3 в тупик. Загоняем вагон 1 в тупик. Выгоняем вагон 1 из тупика. Загоняем вагон 2 в тупик. Выгоняем вагон 2 из тупика. Выгоняем вагон 3 из тупика. Загоняем вагон 4 в тупик. Выгоняем вагон 4 из тупика.

Не все поезда можно отсортировать таким образом. Например, поезд из 3 вагонов, следующих в порядке 2, 3, 1, отсортировать нельзя.

Вася выписал на листке в лексикографическом порядке все поезда длины \(n\), которые можно отсортировать с помощью тупика. Поезд \((a_1, a_2, \ldots, a_n)\) идет раньше поезда \((b_1, b_2, \ldots, b_n)\) в лексикографическом порядке, если существует такое \(i\) (\(1 \le i \le n\)), что для всех \(j < i\) выполняется \(a_j = b_j\), а \(a_i < b_i\). Например, все поезда из трех вагонов, которые можно отсортировать с помощью тупика, в лексикографическом порядке выписываются следующим образом: \((1, 2, 3)\), \((1, 3, 2)\), \((2, 1, 3)\), \((3, 1, 2\)), \((3, 2, 1)\).

Вася потерял свой листок, и его интересует вопрос: какой поезд был выписан на его листке под номером \(k\). Помогите ему выяснить это.

Входные данные

Входной файл содержит два целых числа — \(n\) и \(k\) (\(1 \le n \le 30\), \(1 \le k \le 10^{18}\)).

Выходные данные

Выведите в выходной файл \(n\) целых чисел: \(k\)-й в лексикографическом порядке поезд из \(n\) вагонов, который можно отсортировать с помощью тупика.

Если с помощью тупика можно отсортировать менее \(k\) поездов из \(n\) вагонов, выведите \(-1\).

Примеры тестов
Входные данные
4 1
Выходные данные
1 2 3 4
Входные данные
4 3
Выходные данные
1 3 2 4
Входные данные
4 15
Выходные данные
-1

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест