В одной из компьютерных игр-квестов есть следующее задание. На карте игрового мира размещены N персонажей, с каждым из которых может встретиться игрок. От общения с i-м персонажем карма игрока меняется на величину ai, которая может быть как положительной, так отрицательной или даже нулем.
Изначально карма игрока равна нулю. Для того чтобы пройти на следующий уровень, нужно чтобы карма была в точности равна значению K, при этом карма также может принимать как положительные, так и отрицательные значения.
Комнаты, в которых находятся персонажи, соединены односторонними магическими порталами, поэтому игроку придется встречать персонажей в определенной последовательности: после персонажа номер i он попадает к персонажу номер i + 1, затем к персонажу номер i + 2, и т.д. В комнате последнего персонажа с номером N портала к другому персонажу нет.
Для перемещения между персонажами можно использовать еще и заклинания телепортации, но к сожалению у героя осталось всего лишь два свитка с заклинаниями. Поэтому один из этих свитков придется использовать для того, чтобы телепортироваться к любому из персонажей, а второй свиток — чтобы покинуть игровой мир, после того, как карма героя станет равна K.
Помогите игроку определить, в какую комнату надо телепортироваться в начале и из какой комнаты нужно покинуть игровой мир, чтобы достичь кармы K или сообщите, что это невозможно.
В первой строке входных данных записаны два числа: количество персонажей N и необходимый уровень кармы K (|K| ≤ 109, K ≠ 0). Во второй строке через пробел записаны N целых чисел a1, a2, ..., aN — величины, на которые меняется карма героя после общения с персонажами с номерами 1, 2, ..., N соответственно.
Выведите номер комнаты, в которую надо войти игроку и номер комнаты, из которой надо выйти, чтобы набрать карму K. Если возможных вариантов несколько, то необходимо вывести самый короткий путь, а если и таких несколько, то путь, начинающийся в комнате с как можно большим номером. Если достичь кармы K последовательно общаясь с персонажами невозможно, то выведите одно число - 1.
5 3
-2 2 -1 2 4
2 4
7 1
1 -1 1 -1 1 -1 2
5 5
4 3
2 2 2 2
-1
Тесты по этой задачи разбиты на группы. На 1-3 группах тестов проверка проводится во время тура (online), на последней группе — после окончания тура (offline).
В первой группе тестов 1 ≤ N ≤ 100, |ai| ≤ 100. Баллы начисляются только при прохождении всех тестов группы, группа оценивается в 20 баллов.
Во второй группе тестов 1 ≤ N ≤ 2000, |ai| ≤ 1 000 000. Баллы начисляются только при прохождении всех тестов группы, группа оценивается в 20 баллов.
В третьей группе тестов 1 ≤ N ≤ 200 000, 0 ≤ ai ≤ 109. Баллы начисляются только при прохождении всех тестов группы, группа оценивается в 20 баллов.
В четвертой группе тестов 1 ≤ N ≤ 200 000, |ai| ≤ 109. Каждый тест этой группы оценивается отдельно. Общее число баллов за тесты этой группы равно 40.
Уже долгое время в Институте Искусств, Мутантов и Информационных Технологий разводят милых разноцветных зверюшек. Для удобства каждый цвет обозначен своим номером, всего цветов не более \(10^9\). В один из прекрасных дней в питомнике случилось чудо: все зверюшки выстроились в ряд в порядке возрастания цветов. Пользуясь случаем, лаборанты решили посчитать, сколько зверюшек каждого из запрошенных цветов живет в питомнике, и, по закону жанра, попросили вас написать программу, которая поможет им в решении этой нелегкой задачи.
В первой строке входного файла содержится единственное число \(N\) (\(0 \le N \le 10^5\)) — количество зверюшек в Институте. В следующей строке находятся \(N\) упорядоченных по неубыванию неотрицательных целых чисел, не превосходящих \(10^9\) и разделенных пробелами — их цвета. В третьей строке файла записано число \(M\) (\(1 \le M \le 100\,000\)) — количество запросов вашей программе, в следующей строке через пробел записаны \(M\) целых неотрицательных чисел (не превышающих \(10^9+1\)).
Выходной файл должен содержать \(M\) строчек. Для каждого запроса выведите число зверюшек заданного цвета в питомнике.
10 1 1 3 3 5 7 9 18 18 57 5 57 3 9 1 179
1 2 1 2 0
Дано два списка чисел, числа в первом списке упорядочены по неубыванию. Для каждого числа из второго списка определите номер первого и последнего появления этого числа в первом списке.
В первой строке входных данных записано два числа \(N\) и \(M\) (\(1\le N, M\le 20000\)). Во второй строке записано \(N\) упорядоченных по неубыванию целых чисел — элементы первого списка. В третьей строке записаны \(M\) целых неотрицательных чисел - элементы второго списка. Все числа в списках - целые 32-битные знаковые.
Программа должна вывести \(M\) строчек. Для каждого числа из второго списка нужно вывести номер его первого и последнего вхождения в первый список. Нумерация начинается с единицы. Если число не входит в первый список, нужно вывести одно число \(0\).
10 5 1 1 3 3 5 7 9 18 18 57 57 3 9 1 179
10 10 3 4 7 7 1 2 0
На улице уже неделю лил беспросветный дождь, а Игорь все сидел дома и играл в свои любимые игрушки. Но играть так долго в одно и то же ему быстро надоело, и он пошел к родителям выпрашивать новые. Родители быстро сдались, поэтому на следующий день вся семья собралась, и они поехали в магазин игрушек.
При входе в магазин у Игоря сразу разбежались глаза. Ему хотелось и гоночную машинку, и кораблик с белыми парусами, и саблю, которая так и манила его своим блестящим лезвием. Всего в магазине продается \(N\) новых игрушек, причем так получилось, что все они плоские и имеют форму выпуклых многоугольников (действительно, на что еще можно было надеяться в магазине «Сто тысяч и один выпуклый многоугольник для детей младшего школьного возраста»?). Но строгий отец сказал, что купит Игорю только две игрушки. Игорь сразу же начал перебирать в голове варианты, но их оказалось слишком много, а если быть более конкретным, то его интересовало ровно \(Q\) вариантов выбора пары игрушек.
Любознательный Игорь сразу же задумался о тонкостях упаковки игрушек. А именно, для каждой интересующей его пары игрушек \(i\), \(j\) он хочет проделать следующие операции.
Изначально каждая игрушка лежит в своей плоской прямоугольной коробке, которая плотно прилегает к игрушке. Далее Игорь ставит эти две коробки на стол рядом друг с другом (\(i\)-ю игрушку можно поставить как левее \(j\)-й, так и правее), убирает коробки, потом придвигает игрушки друг к другу, насколько это возможно, и кладет то, что получилось, обратно в коробку (обратите внимание на рисунок). Так как Игорь очень экономный, ему нужно знать размеры получившейся коробки. Повлиять на высоту итоговой коробки, двигая игрушки параллельно плоскости стола, нельзя, так что вам нужно помочь Игорю лишь с определением минимально возможной ширины получившейся коробки.
Обратите внимание, что игрушки можно лишь двигать параллельно плоскости стола, поворачивать их каким-либо образом запрещено. Таким образом, задачу можно считать двумерной: ось \(O_x\) совпадает с плоскостью стола, а ось \(O_y\), по которой измеряется высота игрушек и коробок, перпендикулярна плоскости стола. Стороны коробок параллельны соответствующим осям координат. Диковинных игрушек в магазине предостаточно, так что они могут «стоять» на столе, в том числе и балансируя на одной вершине самым непостижимым образом.
Для лучшего понимания условия ознакомьтесь с примером и иллюстрациями к нему.
В первой строке содержится натуральное число \(N\) (1 ≤ \(N\) ≤ 100 000) - количество игрушек. Далее следуют описания \(N\) выпуклых многоугольников в следующем формате: сначала идет натуральное число \(k_m\) (3 ≤ \(k_m\) ≤ 300 000) - количество вершин в \(m\)-м многоугольнике, затем идут \(k_m\) строк, в которых записаны пары целых чисел xm,s, ym,s, по модулю не превосходящих \(10^9\) - координаты вершин \(m\)-го многоугольника в порядке обхода против часовой стрелки, заданные в системе координат соответствующей ему коробки, которая стоит на столе (это означает, что ym,s >= 0, а также для всех игрушек существует вершина \(v_m\), у которой ym,\(v_m\) = 0). Сумма всех \(k_m\) (обозначим ее за \(S\)) не превосходит 300 000.
В следующей строке записано натуральное число \(Q\) (1 ≤ \(Q\) ≤ 500 000) - число вариантов. Следующие \(Q\) строк содержат пары натуральных чисел \(i_t\), \(j_t\) (1 ≤ \(i_t\) < \(j_t\) ≤ \(N\)) - номера сдвигаемых игрушек в очередном варианте.
Выведите \(Q\) строк: для каждого варианта выбора пары одно вещественное число - необходимую ширину коробки. Ответ будет считаться правильным, если все числа посчитаны с абсолютной или относительной погрешностью не более \(10^{-9}\).
Верхний рисунок иллюстрирует исходное размещение игрушек в коробках, а нижние — варианты итогового расположения игрушек (оптимальный вариант слева).
Тесты к этой задаче состоят из четырех групп.
0. Тест 1. Тест из условия, оценивается в ноль баллов.
1. Тесты 2–20. В тестах этой группы \(k_m\) ≤ 100, \(Q\) ≤ 1 000, \(S\) ≤ 10 000. Эта группа оценивается в 25 баллов. Баллы начисляются только при прохождении всех тестов группы.
2. Тесты 21–40. В тестах этой группы \(k_m\) ≤ 300, \(Q\) ≤ 50 000, \(S\) ≤ 100 000. Эта группа оценивается в 25 баллов. Баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае про- хождения всех тестов из первой группы.
3. Тесты 41–65. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 50 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.
2 5 0 0 4 2 6 6 3 8 -2 4 5 0 0 2 0 8 4 5 11 3 12 1 1 2
14.5000000000
2 3 0 0 0 3 -1 1 3 0 0 1 0 -20 20 1 1 2
21.0000000000