---> 10 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Петя работает над очень большим проектом. Проект содержит N файлов. В процессе работы Пете часто приходится просматривать и редактировать файлы. Для ускорения работы Петя использует файловый менеджер Fur Manager, который отображает список имен файлов проекта в некотором порядке.

В текущей версии Fur Managera для перемещения по списку имен файлов есть следующие возможности:

  1. можно нажать клавишу вниз, при этом курсор перемещается на следующий файл в списке, для последнего файла следующим считается первый;

  2. можно нажать клавишу вверх, при этом курсор перемещается на предыдущий файл в списке, для первого файла предыдущим считается последний;

  3. можно нажать клавишу Alt и, удерживая ее, набрать последовательность латинских букв. После этого клавишу Alt следует отпустить, и в этот момент курсор переместится на ближайший файл, имя которого начинается c заданной последовательности символов. Ближайший файл — это файл, на который можно переместиться за наименьшее количество нажатий клавиши вниз. Если заданная последовательность является началом имени текущего файла, или файла, имя которого начинается с этой последовательности, не существует, то курсор останется на месте.

Первая и вторая из описанных возможностей файлового менеджера требуют по одному нажатию клавиши, а третья — одного нажатия (нажатие клавиши Alt) плюс количество нажатий, равное длине набранной последовательности латинских букв.

Файлы пронумерованы от 1 до N в порядке их следования. После загрузки Fur Manager’а курсор находится на первом файле.

Петя знает, что ему сначала придется редактировать файл с номером a1, затем с номером a2 и так далее, а последним — файл с номером ak. В последовательности a1, a2, ..., ak один и тот же номер может встречаться несколько раз. При каждом перемещении от одного файла к другому Петя хочет нажимать как можно меньше клавиш.

Требуется написать программу, которая выдает искомую последовательность нажатий клавиш.

Входные данные

В первой строке входных данных содержится целое число N (1 ≤ N ≤ 1000) — количество файлов в проекте.

В следующих N строках записаны имена файлов, по одному в каждой строке. Файлы перечислены в том порядке, в котором они отображаются файловым менеджером. Имена состоят только из строчных латинских букв. Длина каждого имени не превосходит 2000 символов. Все имена файлов различны.

Далее в следующей строке записано целое число k (1 ≤ k ≤ 10).

Последняя строка входных данных содержит k целых чисел a1, a2, ..., ak (1 ≤ aiN) — номера редактируемых файлов. Редактирование файлов выполняется в том порядке, в котором они встречаются в последовательности a1, a2, ..., ak.

Выходные данные

Выведите описание искомой последовательности нажатий клавиш в виде k блоков информации:

  • первый блок информации описывает перемещение от файла с номером 1 к файлу с номером a1;
  • второй блок информации описывает перемещение от файла с номером a1 к файлу с номером a2;
  • k-ый блок информации описывает перемещение от файла с номером ak–1 к файлу с номером ak.

Каждый блок информации выглядит следующим образом.

В первой строке блока записывается число L — наименьшее количество нажатий клавиш, необходимое для перемещения от очередного файла последовательности к следующему.

Следующие L строк блока описывают нажимаемые клавиши. Каждая из строк содержит описание одной клавиши:

  • если нажимается клавиша вниз, то в строке записывается слово down;
  • если нажимается клавиша вверх, то в строке записывается слово up;
  • если нажимается клавиша Alt, то в строке записывается слово Alt;
  • при нажатии клавиши с латинской буквой выводится соответствующая ей латинская буква.

Если существует несколько оптимальных способов перемещения, то требуется вывести любой из них.

Система оценки
  • Подзадача 1. Решения, верно работающие при \(n \leqslant 30\), оцениваются в 28 баллов. Баллы ставятся при прохождении всех тестов.
  • Подзадача 2. Решения, верно работающие при больших ограничениях, оцениваются по 4 балла за тест..
Примеры
Входные данные
6
a
b
c
d
e
f
4
4 3 1 6
Выходные данные
2
Alt
d
1
up
2
Alt
a
1
up

Пекка вырос, стал студентом, и подрабатывает в свободное от учебы время на разгрузке желез- нодорожных вагонов. Ему требуется погрузить товары из одного состава в другой, стоящий рядом на параллельном пути.

Известно, какой товар находится в каждом из вагонов первого состава, и какой товар должен быть в каждом из вагонов второго состава. Товар из любого вагона первого состава легко пере- грузить в стоящий напротив вагон второго состава с помощью транспортера. Проблема в том, что порядок вагонов первого состава может не соответствовать порядку вагонов второго состава.

Чтобы правильно поместить груз из одного вагона первого состава в вагон второго состава, Пекка может сдвигать (но только вперед — под горку) какой-либо из составов на длину одного вагона, выпив для этого баночку энергетического напитка.

Пекка очень заботится о своем здоровье и не хочет злоупотреблять энергетической жидкостью. Помогите Пекке определить, какое минимальное количество баночек напитка ему потребуется вы- пить для того, чтобы перегрузить все товары из первого состава.

Считается, что:

  1. Все вагоны одинаковой длины.
  2. Каждому типу товара соответствует определенное слово — его название (“Oil”, “Wood” и т. д.)
  3. Количество разгружаемых вагонов первого состава с товарами любого типа совпадает с количеством загружаемых вагонов второго состава для товаров такого же типа.
  4. Может быть несколько вагонов первого состава с одинаковым типом товара. При этом любой из них можно перегружать в соответствующие вагоны второго состава (но только полностью).
  5. Если вагон первого состава с определенным типом товара встал рядом с вагоном второго состава, предназначенного для данного типа груза, то Пекка может как осуществить перегрузку, так и отказаться от нее
  6. Изначально составы стоят таким образом, что первый вагон первого состава стоит рядом с первым вагоном второго состава, а последний вагон первого состава — рядом с последним вагоном второго состава.
Формат входного файла

В первой строке входного файла записано количество вагонов в составах N (1 ≤ N ≤ 100 000). Далее следуют N строк, описывающих вагоны первого состава в порядке, в котором они соединены в состав. В каждой строке записано название груза, находящегося в соответствующем вагоне. Название содержит от одной до десяти больших и маленьких букв латинского алфавита. Названия считаются одинаковыми, если они совпадают с учетом регистра (например, “Oil” и “oil” — разные грузы). Затем записаны N строк, аналогичным образом описывающих вагоны второго состава.

Формат выходного файла

Выведите минимальное количество баночек энергетического напитка, которые потребуются Пекке для того, чтобы осуществить погрузку..

Группы тестов:

  • Группа 0 : Тест из условия (тест 1). 0 баллов.
  • Группа 1 : N ≤ 10 (тесты 2-6). 30 баллов.
  • Группа 2 : Ответ на задачу не превосходит 100 (тесты 7-11). 30 баллов.
  • Группа 3 : Дополнительных ограничений нет (тесты 12-50). 40 баллов.
Баллы за группу тестов выставляются только при корректной работе программы на всех тестах группы.

Примеры
Входные данные
3
Oil
Wood
Grain
Wood
Grain
Oil
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Петя достаточно давно занимается в математическом кружке, поэтому он уже успел не только правила выполнения простейших операций, но и такое достаточно сложное понятие как симметрия. Для того, чтобы получше изучить симметрию Петя решил начать с наиболее простых геометрических фигур – треугольников. Он скоро понял, что осевой симметрией обладают так называемые равнобедренные треугольники. Поэтому теперь Петя ищет везде такие треугольники.

Напомним, что треугольник называется равнобедренным, если его площадь положительна, и у него есть хотя бы две равные стороны.

Недавно Петя, зайдя в класс, увидел, что на доске нарисовано n точек. Разумеется, он сразу задумался, сколько существует троек из этих точек, которые являются вершинами равнобедренных треугольников.

Требуется написать программу, решающую указанную задачу.

Входные данные

Входной файл содержит целое число n (3 ≤ n ≤ 1500). Каждая из последующих строк содержит по два целых числа – xi и yi – координаты i-ой точки. Координаты точек не превосходят 109 по абсолютной величине. Среди заданных точек нет совпадающих.

Выходные данные

В выходной файл выведите ответ на задачу.

Разбалловка для личной олимпиады

Тесты 1-2 — из условия. Оцениваются в 0 баллов.

Тесты 3-13 — n не превосходит 500. Группа тестов оценивается в 40 баллов.

Тесты 14-28 — дополнительных ограничений нет. Группа тестов оценивается в 60 балла (вместе с предыдущими группами — 100 баллов).

Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 4 балла.

Примеры
Входные данные
3
0 0
2 2
-2 2
Выходные данные
1
Входные данные
4
0 0
1 1
1 0
0 1
Выходные данные
4
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

В известном городе Санкт-Тверь решили построить новый микрорайон, представляющий в плане прямоугольную область. Границы микрорайона и его улицы по проекту ориентированы строго по сторонам света, причем улицы разбивают микрорайон на кварталы размером 1 км × 1 км.

Во время привязки исходного проекта к местности выяснилось, что некоторые кварталы по проекту микрорайона оказываются полностью или частично расположенными на топком болоте. Область, занимаемая болотом, связна и со всех сторон окружена подлежащими застройке кварталами микрорайона (область  связна, если из любой ее точки можно добраться в любую другую, не выходя за пределы области).

Для сохранения экологии местности и обеспечения безопасности жителей занятую болотом область решили оградить стеклянным забором. Забор должен проходить только по границам кварталов проектируемого микрорайона, отделяя болото, и, возможно, некоторые кварталы проекта, не занятые болотом, от остальной части микрорайона.

Для экономии строительных материалов забор должен иметь минимальную длину. Среди всех заборов минимальной длины нужно выбрать тот, для которого площадь части микрорайона, попадающей внутрь забора, минимальна.

Требуется написать программу, которая спроектирует забор с заданными выше свойствами.

Входные данные

Входные данные содержат описание многоугольника — границы области, состоящей только из кварталов c заболоченными участками. Стороны многоугольника параллельны осям координат.

В первой строке задано целое число n — количество вершин в многоугольнике (4 ≤ n ≤ 100 000, n четное). В каждой из следующих n строк заданы два целых числа — координаты очередной вершины при обходе этого многоугольника против часовой стрелки. Все числа не превосходят 109 по абсолютной величине. Никакие три последовательные вершины границы не лежат на одной прямой. Граница многоугольника не содержит самопересечений и самокасаний.

Выходные данные

Вывод программы на стандартный поток должен содержать описание многоугольника, определяющего искомый забор. Формат описания многоугольника тот же, что и для входных данных. Никакие три последовательные вершины этого многоугольника не должны лежать на одной прямой.

Примеры
Входные данные
8
0 0
9 0
9 9
6 9
6 3
3 3
3 6
0 6
Выходные данные
6
0 0
9 0
9 9
6 9
6 6
0 6
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

К предстоящей олимпиаде в Сочи требуется возвести N олимпийских объектов. Процесс строительства каждого объекта определяется освоением выделяемых на него денежных средств.

В строительстве объектов готовы участвовать K фирм. Фирмы имеют разные строительные мощности, выраженные в количестве денежных средств, которые фирма может осваивать в единицу времени.

В каждый момент времени фирма может осуществлять работы только на одном объекте. В строительстве одного объекта не могут одновременно участвовать несколько фирм. В любой момент времени любой объект может быть передан для продолжения строительства любой фирме.

Администрация строительства олимпийских объектов заинтересована в скорейшем освоении денежных средств, поэтому хочет составить такой график работ, при следовании которому строительство будет завершено в кратчайшие сроки. В графике будет указано время, в течение которого тот или иной объект будет строиться какой-то фирмой.

Напишите программу, результаты работы которой позволят администрации построить требуемый график.

Входные данные

Первая строка содержит целое число N — количество объектов (1   50). Во второй строке содержатся разделенные пробелами целочисленные значения S1S2, S3, …, SN объемов денежных средств, выделяемых для строительства каждого из объектов. Числа Si выражены в тысячах рублей, положительные и не превышают 1000.

В третьей строке находится целое число K — количество строительных фирм (1   50). Четвертая строка содержит разделенные пробелами целочисленные значения мощностей каждой из фирм V1, V2, V3, …, VK в тыс.руб/час. Числа Vj положительные и не превышают 1000.

Выходные данные

Первая строка содержит действительное число T — время в часах окончания всех работ, считая с начала строительства, выведенное не менее чем с тремя точными знаками после запятой. Далее в каждой строке содержатся разделенные пробелами три числа: t, i, j, где действительное число t — время от начала строительства в часах, в которое j-я фирма приступает к строительным работам на i-м объекте.

Значения времен необходимо выводить с максимально возможной точностью.

Строки должны быть отсортированы по неубыванию t.

Примеры
Входные данные
2
24 20
2
3 2
Выходные данные
8.800
0 1 1
0 2 2
6.4000000 1 2
6.4000000 2 1
Входные данные
3
100 100 100
4
5 5 10 10
Выходные данные
12.00000
0 1 3
0 2 4
0 3 1
4 2 2
4 3 4
8 1 1
8 3 4
8 2 3

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест