---> 115 задач <---
Источники --> Личные олимпиады --> Открытая олимпиада школьников
    2002(9 задач)
    2003(10 задач)
    2004(13 задач)
    2005(12 задач)
    2006(12 задач)
    2007(11 задач)
    2008-2009(19 задач)
    2009-2010(23 задач)
    2010-2011(19 задач)
    2011-2012(8 задач)
    2012-2013(21 задач)
    2013-2014(8 задач)
    2014-2015(8 задач)
Страница: << 17 18 19 20 21 22 23 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Как известно, автобус должен ходить по расписанию. И Иннокентий, используя свои многочисленные связи в магазине плитки, совершил невозможное: по маршруту теперь курсируют целых \(M\) автобусов, и на каждой остановке висит свое расписание, которое представляет собой набор из \(M\) времен. Плиточный магнат является крупным авторитетом в городе, поэтому расписание соблюдается: от каждой остановки ровно в каждое из указанных времен отправляется автобус. Казалось, что проблема общественного транспорта навсегда решена...

Однако, дьявол кроется в деталях. Действительно, автобусы отправляются с остановок в нужные времена, но никто не гарантирует, что между остановками не произойдет обгон, и автобус, который отправился от предыдущей остановки раньше, не отправится со следующей гораздо позже, при этом не нарушая условия, что в каждое из указанных в расписании времен какой-то автобус отправляется.

Иннокентий решил оценить масштабы трагедии. Для этого он попросил каждого из Q своих друзей сообщить маршрут, по которому они добираются до места работы. Каждый маршрут описывается тремя числами \(u_i\), \(v_i\), \(w_i\): \(u_i\) — это номер остановки, ближайшей к дому i-го друга, \(v_i\) — номер остановки, ближайшей к его работе, а \(w_i\) — номер автобуса,на котором i-й друг едет из дома на работу. При этом с точки зрения i-го друга автобусы нумеруются от \(1\) до \(M\) в том порядке, в котором они отправляются с остановки \(u_i\).

Иннокентий просит вас независимо для каждого друга определить, насколько поздно тот может доехать до конечной остановки своего маршрута.

Входные данные

В первой строке входных данных содержатся два целых числа \(N\) и \(M\) — количество остановок и количество автобусов соответственно (\(2 \le N * M \le 150 000\)). В следующей строке содержатся \(N-1\) целых чисел \(travel_1\), . . . , \(travel_{N-1}\), где \(travel_i\) — минимальное время, необходимое для перемещения между остановками i и i + 1 (\(1 \le travel_i \le 10^9\)).

В следующих \(N\) строках содержатся описания расписаний, каждое из которых представляет собой отсортированный по возрастанию список из \(M\) различных целых чисел \(t_i\) — времен, в которые автобусы должны отправляться с соответствующей остановки (\(1 \le t_i \le 10^9\)).

В следующей строке содержится число T — тип теста (1 или 2). Если T = 1, то это — обычный тест. Тогда на следующей строке содержится целое число Q — количество опрошенных друзей Иннокентия (\(1 \le Q \le 150 000 \)). Далее в Q строках содержатся описания маршрутов друзей, каждое из которых состоит из трех целых чисел \(u_i\), \(v_i\) и \(w_i\): номеров остановок, где начинается и заканчивается поездка i-го друга, и номер автобуса в расписании остановки ui, на котором эта поездка совершается (\(1 \le u_i < v_i \le N, 1 \le w_i \le M\)).

\textbf{Обратите внимание} : дальнейшее описание относится только к последней группе тестов. Если T = 2, то это — тест-серия. Тогда на следующей строке содержатся три целых числа — A, B и K (\(1 \le A, B \le 10^3 , 1 \le K \le 150\)).

В \t{тесте-серии} у Иннокентия Q = (N -1)·M ·K друзей. На каждой из N - 1 остановок, кроме последней, проживает ровно M * K друзей, причем для каждого \(w\) от 1 до M есть ровно K друзей, которые уезжают с этой остановки w-м автобусом.

Остановки, до которых едут K друзей, уезжающих с u-й остановки w-м автобусом, определяются следующим образом. Задается последовательность чисел \(q_i\): \(q_1\) = A, \(q_2\) = B, для i > 2 \(q_i\) = u * \(q_{i-1}\) + w * \(q_{i-2}\) + 42. Тогда i-й из этих K друзей будет ехать до остановки с номером \(v_i\) = u + 1 + (\(q_i\) mod (N - u)), где mod обозначает операцию взятия остатка от деления.

Выходные данные

Если это обычный тест, то выведите для каждого друга в отдельной строке единственное целое число - искомое максимальное время прибытия на конечную остановку в его маршруте. Если это тест-серия, то выведите единственное целое число — остаток от деления суммы максимальных времен прибытия для всех друзей Иннокентия на \(2^{32}\).

Примечание

Приведем пояснение ко второму тесту из условия.

Это \textbf{тест-серия}. В нем у Иннокентия 5 · 4 · 2 = 40 друзей. Например, с первой остановки вторым автобусом уезжают ровно пять друзей. Поясним, как в этом тесте для них определить конечные остановки. u = 1, w = 2. Строим последовательность \(q_i\): \(q_1\) = 9, \(q_2\) = 10, \(q_3\) = 1 · 10 + 2 · 9 + 42 = 70, \(q_4\) = 1 · 70 + 2 · 10 + 42 = 132, \(q_5\) = 1 · 132 + 2 · 70 + 42 = 314. По ней восстанавливаются конечные остановки для этих пяти друзей Иннокентия: \(v_1\) = 1 + 1 + (9 mod 4) = 3, \(v_2\) = 1 + 1 + (10 mod 4) = 4, \(v_3\) = 1 + 1 + (70 mod 4) = 4, \(v_4\) = 1 + 1 + (132 mod 4) = 2, \(v_5\) = 1 + 1 + (314 mod 4) = 4.

Система оценки

Тесты к этой задаче состоят из шести групп. Каждая группа, кроме нулевой, оценивается в 20 баллов. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов \textbf{предыдущих групп}, исключая тесты из условия. В группах тестов с первой по четвертую включительно вам предлагаются только обычные тесты.

0. Тесты 1—2. Тесты из условия, оцениваются в ноль баллов.

1. Тесты 3—12. В тестах этой группы \(N = 2, M \le 1 000, Q \le 1 000\).

2. Тесты 13—22. В тестах этой группы \(N = 2, M \le 75 000, Q \le 75 000\).

3. Тесты 23—37. В тестах этой группы \(N * M \le 150 000, N * Q \le 150 000\).

4. В тестах этой группы \(N * M \le 150 000, Q \le 150 000\).

5. В этой группе вам предлагаются только тесты-серии. Другие дополнительные ограничения отсутствуют.

Примеры
Входные данные
2 3
1
1 10 21
11 21 31
1
3
1 2 1
1 2 2
1 2 3
Выходные данные
21
21
31
Входные данные
5 2
2 5 3 4
1 3
3 5
10 11
13 14
18 23
2
9 10 5
Выходные данные
667
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Империя обнаружила мятежников на ледяной планете Хот! По сведениям разведки все командование Альянса Повстанцев сейчас скрывается на базе «Эхо», спрятанной в горах на севере этой суровой планеты.

Для того, чтобы окончательно подавить силы восстания, необходимо в ходе стремительной атаки уничтожить эту базу и скрывающихся на ней мятежников. К сожалению, укрытие хорошо укреплено: в частности, его защищает мощное силовое поле, препятствующее бомбардировкам с орбиты. Силовое поле имеет форму выпуклого многоугольника с вершинами в N специальных станциях-ретрансляторах. Никакие три станции не располагаются на одной прямой.

Перед тем как начинать операцию по уничтожению повстанцев, требуется лишить их базу силового поля, уничтожив эти N станций точечным бомбометанием. Однако точные координаты этих станций нам неизвестны. Ваша цель — узнать расположение станций-ретрансляторов, чтобы наши войска смогли начать наступление.

На планете введена система координат, устроенная таким образом, что все станции-ре-транс-ля-торы находятся в точках с целыми координатами, не превосходящими C по модулю.

В вашем распоряжении есть зонд-разведчик, оснащенный специальным оборудованием, позволяющим регистрировать станции-ретрансляторы. Если запустить его по прямой над базой повстанцев, по его информации можно будет узнать, сколько станций-ретрансляторов располагаются слева, и сколько — справа от прямой его движения. Станции, находящиеся на его пути, зонд не регистрирует.

С повстанцами надо расправиться как можно скорее: у вас есть время не более чем на 105 запусков этого зонда. Восстановите по полученной от него информации точные координаты станций-ретрансляторов, чтобы мы могли начать наступление, и Империя вас не забудет!

Входные данные

Это интерактивная задача.

При запуске решения на вход подаются два целых числа N (3 ≤ N ≤ 1 000) и C (5 ≤ C ≤ 1 000 000) — количество станций и ограничение на абсолютную величину их координат.

На каждый запуск зонда-разведчика вводится полученная им информация — два целых числа l и r, разделенных пробелом, — количество станций-ретрансляторов слева и справа от траектории его движения соответственно.

Выходные данные

Для запуска зонда выведите строку «? x1 y1 x2 y2», где (x1, y1) и (x2, y2) — две точки с целочисленными координатами, лежащие на прямой, по которой должен лететь зонд. Зонд будет лететь в направлении от первой точки ко второй. Точки не должны совпадать. Координаты точек не должны превосходить 5C по модулю.

Как только вы найдете ответ, выведите строку «Ready!», и в следующих N строках выведите координаты станций в любом порядке. После этого ваша программа должна завершиться.

Примеры

Входные данные
4 5
0 4
0 3
0 3
0 2
1 1
3 1
3 0
3 0
Выходные данные
? -1 3 1 3
? -1 2 1 2
? -1 1 0 2
? -1 0 0 2
? 0 0 0 2
? 1 0 1 2
? 2 0 2 2
? 3 0 1 2
Ready!
0 -1
2 1
0 2
-1 0

Примечание

В точности соблюдайте формат выходных данных. После вывода каждой строки сбрасывайте буфер вывода — для этого используйте flush(output) на языке Паскаль или Delphi, fflush(stdout) или cout.flush() в C/C++, sys.stdout.flush() на языке Python, System.out.flush() на языке Java.

Программа не должна делать более 105 запросов запуска зонда. При превышении этого количества, тест будет не пройден с вердиктом «Wrong Answer».

Тесты к этой задаче состоят из четырех групп.

  • Тест 1. Тест из условия, оцениваемый в ноль баллов.
  • Тесты 2–11. В тестах этой группы N = 3, C ≤ 10. Эта группа оценивается в 30 баллов.
  • Тесты 12–24. В тестах этой группы N ≤ 50, C ≤ 100. Эта группа оценивается в 30 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой группы.
  • В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой и второй группы.

Баллы за каждую группу тестов ставятся только при прохождении всех тестов группы.

Примеры
Входные данные
4 5
-1 0
0 -1
2 1
0 2
Выходные данные
28
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

На отдыхе в Теплой Стране Вера познакомилась с симпатичным волейболистом- трактористом Петром. Турист Петр, кстати, собирается после отличного отдыха в Теплой Стране отправиться в путешествие по городам Европы. Как известно, Европа обладает развитой транспортной системой: в Европе есть \(V\) интересующих Петра городов и \(E\) маршрутов ночных поездов. Каждый маршрут соединяет два различных города, время в пути составляет одну ночь. Поезда по маршруту ходят в обоих направлениях.

Основной целью поездки Петра является осмотр местных достопримечательностей. По- скольку Петр — невероятно занятой человек, то он решил, что все путешествие должно занимать не более четырех дней. Петр уже многое повидал, поэтому на осмотр достопримечательностей в каждом городе Петр тратит ровно один день. Он хочет составить наиболее практичный тур: каждый день он будет тратить на осмотр города, а каждую ночь — на переезд ночным поездом между городами. Разумеется, Петр не имеет ни малейшего желания посещать один город несколько раз.

Но на этом прагматичность Петра не заканчивается: Петр, как настоящий турист, хочет посмотреть на самые красивые европейские достопримечательности. Он долго изучал справочники и для каждого города оценил свою ожидаемую радость от его посещения \(p_i\). Теперь он хочет найти маршрут, при котором его радость будет наибольшей. Помогите Петру найти такой маршрут.

Формат входного файла

В первой строке входных данных заданы два целых числа \(V\) и \(E\) (1 ≤ \(V\); \(E \le 3*10^5\)) — количество городов и маршрутов поездов, соответственно. В следующей строке заданы V целых чисел \(p_i\) (1 ≤ \(p_i\) ≤ \(10^8\)), где \(p_i\) обозначает ожидаемую радость от посещения го- рода с номером \(i\). В следующих \(E\) строках заданы описания маршрутов поездов. Каждое описание состоит из пары различных чисел \(a_i\) и \(b_i\) (1 ≤ \(a_i\); \(b_i\) ≤ V\( \)) — номеров городов, между которыми курсирует этот маршрут поезда. Гарантируется, что между каждой парой городов существует не более одного маршрута поезда.

Формат выходного файла

В первой строке выходных данных выведите число K (1 ≤ K ≤ 4) — количество городов в оптимальном маршруте туриста Петра. В следующей строке выведите номера этих городов в порядке посещения. Города нумеруются начиная с единицы. Если оптимальных маршрутов несколько, выведите любой из них.

Система оценивания

Тесты к этой задаче состоят из пяти групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов предыдущих групп.

0. Тесты 1–2. Тесты из условия, оцениваются в ноль баллов.

1. Тесты 3–16. В тестах этой группы \(V\); \(E\) ≤ 100. Эта группа оценивается в 20 баллов

2. Тесты 17–32. В тестах этой группы \(V\); \(E\) ≤ 1 000. Эта группа оценивается в 20 баллов.

3. Тесты 33–53. В тестах этой группы \(V\) ≤ 3 000, \(E\) ≤ 60 000. Эта группа оценивается в 30 баллов.

4. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 30 баллов. Решение будет тестироваться на тестах этой группы offline, т. е. после окончания тура.

Примеры
Входные данные
5 4
4 2 3 1 5
1 2
2 3
3 4
4 5
Выходные данные
4
2 3 4 5
Входные данные
4 3
1 2 3 4
1 2
1 3
1 4
Выходные данные
3
4 1 3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Пафнутий и его друзья — большие любители разнообразных настольных игр. Особенно им нравятся игры, требующие как можно быстрее производить в уме непростые вычисления, поэтому абсолютным хитом их вечерних посиделок в аудиториях НУОП (Неизвестного университета олимпиадного программирования) стала игра «Шустрая черепашка». В комплект игры входят:

* Клетчатое поле из \(N\) рядов по \(M\) клеток. Каждая клетка поля либо свободна, либо блокирована для перемещения.

* Q игровых карточек. Каждая карточка содержит описание множества стартовых клеток A, множества дополнительно блокируемых клеток B и множества конечных клеток C. Множества A, B и C непусты, попарно не пересекаются и состоят из свободных клеток.

* Маленькая фишка в форме черепашки.

Правила игры очень просты. Игроки последовательно разыгрывают игровые карточки. Как только открывается очередная карточка, игрокам необходимо вычислить, сколько существует хороших троек клеток (\(a_i b_j c_k)\), где \(a_i \in A\), \(b_j \in B\), \(c_k \in C\). Тройка клеток называется хорошей, если можно провести черепашку из стартовой клетки ai в конечную клетку \(c_k\), не посещая при этом клетку \(b_j\). На перемещение черепашки наложено три условия:

1. Черепашка имеет право перемещаться только вниз и вправо в пределах поля.

2. Находиться на блокированных клетках запрещено

3. Клетка \(b_j\) также блокируется для перемещения

Так как таблицу с правильными ответами создатели не включили в комплект, в пылу игры постоянно возникают споры о правильности того или иного значения. Для установления истины ребята попросили вас посчитать ответы для данного комплекта.

Формат входного файла

Первая строка входного файла содержит два целых числа \(N\) и \(M\) (1 ≤ \(N\), \(M\) ≤ 150) — количество строк и столбцов игрового поля.

Следующие \(N\) строк по \(M\) символов описывают игровое поле в порядке следования сверху вниз, слева направо. Символ ‘.’ соответствует свободной клетке, а ‘#’ — занятой. Строки нумеруются от 1 до \(N\), столбцы — от 1 до \(M\)

Следующая строка содержит целое число \(Q\) (1 ≤ \(Q\) ≤ 100 000) — количество игровых карточек.

Далее следуют \(Q\) блоков, описывающих карточки. Каждый блок состоит из трех строк, описывающих множества \(A\), \(B\) и \(C\) соответственно. Первое число описания определяет размер соответствующего множества, после чего перечисляются его клетки. Каждая клетка задается двумя числами — номером строки и номером столбца. Все клетки в описании различны. Смотрите комментарии к примеру для лучшего понимания формата входных данных.

Гарантируется, что все множества непусты, все клетки всех множеств являются свободными и никакая клетка не принадлежит более чем одному множеству из какой-то карточки.

Формат выходного файла

В выходной файл выведите ровно \(Q\) чисел по одному на строке — правильные ответы на карточки в порядке их следования во входном файле.

Комментарии

В приведенном примере игровой комплект содержит две карточки

Во всех тройках первой карточки черепашка стартует в верхнем левом углу и финиширует в правом нижнем. Несложно видеть, что это возможно сделать, только если из трех элементов множества \(B\) блокируется первая клетка второй строки, то есть хорошей тройкой является \((1, 1) - (2, 1) - (5, 6)\).

На второй карточке хорошими являются тройки: \((1, 2) - (3, 1) - (5, 6)\), \((2, 1) - (3, 1) - (5, 6)\), \((2, 1) - (3, 3) - (5, 1)\).

Система оценивания

Тесты к этой задаче состоят из четырех групп

0. Тест 1. Тест из условия, оценивается в ноль баллов.

1. Тесты 2–18. В тестах этой группы \(N\) ≤ 100, \(Q\)total ≤ 1 000. Эта группа оценивается в 30 баллов. Баллы начисляются только при прохождении всех тестов группы.

2. Тесты 19–32. В тестах этой группы \(N\) ≤ 100, \(Q\)total ≤ 1 000 000. Эта группа оценивается в 30 баллов. Баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой группы.

3. В тестах этой группы дополнительные ограничения отсутствуют, однако гарантируется, что \(N\) и \(Q\)total будут равномерно возрастать с номером теста. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы offline, т. е. после окончания тура, причем только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.

Примеры
Входные данные
5 6
..##..
....#.
.#.#..
.#...#
..#...
2
1 1 1
3 2 1 2 3 4 3
1 5 6
2 1 2 2 1
2 3 1 3 3
2 5 1 5 6
Выходные данные
1
3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
512 megabytes

Вова и Марина любят играть в игры, а особенно — придумывать к ним свои правила. Недавно они открыли для себя веселую игру «Чапаев», в которой игроки должны сбивать щелчками шашки вражеского цвета с шахматной доски (также эта игра известна под названием «Щелкунчики»). Вдоволь наигравшись, они решили модифицировать правила, добавив игре математическую сложность.

Теперь они играют в «Чапаева» не на шахматной доске, а на доске в форме дерева! Их дерево состоит из \(N\) вершин. Вершина 1 является корнем дерева, а из каждой из оставшихся вершин проведено ребро в некоторую вершину с меньшим номером — ее непосредственного предка.

В игре участвуют шашки одного цвета, изначально расположенные в некоторых вершинах дерева. За один ход игрок выбирает некоторую шашку и щелчком отправляет ее к корню по ребрам дерева, сбивая при этом с доски все встреченные на пути шашки. Сама шашка, по которой производился удар, после попадания в корень дерева также слетает с доски.

Игроки делают ходы по очереди. Проигрывает тот игрок, к ходу которого на доске не остается шашек.

Придуманная ими игра замечательна также тем, что на одной и той же доске можно играть, начиная с разных начальных позиций шашек. Практика показала, что самые интересные партии получаются, если исходно расставить фишки во все вершины, являющиеся потомками (непосредственными или косвенными) некоторой вершины Root, при этом в саму вершину Root фишка не ставится.

Дети решили сыграть \(N\) партий, перебрав в качестве вершины Root каждую вершину дерева по одному разу. Если у очередной вершины Root нет потомков, и на доске исходно не оказывается ни одной фишки, то игры не происходит, и дети переходят к следующей расстановке. В каждой партии Марина ходит первой.

Вова интересуется у вас, в скольких партиях Марина сможет одержать победу, если игроки будут действовать оптимально.

Формат входного файла

В первой строке находится целое число \(N\) (1 ≤ \(N\) ≤ 500 000) — количество вершин в дереве.

Во второй строке следуют целые числа \(p_2\), \(p_3\), ..., \(p_N\), разделенные пробелами, где \(p_i\) — это номер вершины, являющейся предком вершины \(i\) (1 ≤ pi < i).

Формат выходного файла

Выведите единственное целое число — количество партий, в которых Марина одержит победу.

Комментарий

Разберем тест из условия. Доска для игры показана на рисунках ниже. Дети сыграют четыре партии, выбирая в качестве Root вершины 1, 2, 3 и 5. Если выбрать в качестве Root любую из трех оставшихся вершин, на доске исходно не окажется ни одной фишки, поэтому игры не произойдет.

Если выбрать в качестве Root вершину 5, фишки будут исходно находиться в вершинах 6 и 7. В такой партии Марина проигрывает: после того, как она сбивает любую из этих двух фишек с доски, Вова сбивает оставшуюся и заканчивает партию.

Если выбрать в качестве Root вершину 2 или 3, у Марины будет возможность выиграть игру за один ход, щелкнув по фишке из вершины 4 (при этом, в случае Root = 2, она по пути также собьет фишку из 3 вершины по правилам игры)

Можно убедиться, что если выбрать в качестве Root вершину 1, у Марины также будет выигрышная стратегия. Для этого первым ходом Марина должна сбить фишку из вершины 2. Пример партии с таким начальным расположением показан ниже.

Таким образом, Марина выигрывает в трех партиях

Система оценивания

Тесты к этой задаче состоят из пяти групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов предыдущих групп.

0. Тест 1. Тест из условия, оценивается в ноль баллов.

1. Тесты 2–17. В тестах этой группы \(N\) ≤ 20. Эта группа оценивается в 20 баллов

2. Тесты 18–38. В тестах этой группы \(N\) ≤ 200. Эта группа оценивается в 20 баллов.

3. Тесты 39–59. В тестах этой группы \(N\) ≤ 5 000. Эта группа оценивается в 20 баллов.

4. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов.

Примеры
Входные данные
7
1 2 3 1 5 5
Выходные данные
3

Страница: << 17 18 19 20 21 22 23 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест