Страница: << 123 124 125 126 127 128 129 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Телефонные номера в адресной книге мобильного телефона имеют один из следующих форматов:

+7<код><номер>

8<код><номер>

<номер>

где <номер> — это семь цифр, а <код> — это три цифры или три цифры в круглых скобках. Если код не указан, то считается, что он равен 495. Кроме того, в записи телефонного номера может стоять знак “-” между любыми двумя цифрами (см. пример).

На данный момент в адресной книге телефона Васи записано всего три телефонных номера, и он хочет записать туда еще один. Но он не может понять, не записан ли уже такой номер в телефонной книге. Помогите ему!

Два телефонных номера совпадают, если у них равны коды и равны номера. Например, +7(916)0123456 и 89160123456 — это один и тот же номер.

Входные данные

В первой строке входных данных записан номер телефона, который Вася хочет добавить в адресную книгу своего телефона. В следующих трех строках записаны три номера телефонов, которые уже находятся в адресной книге телефона Васи.

Гарантируется, что каждая из записей соответствует одному из трех приведенных в условии форматов.

Выходные данные

Для каждого телефонного номера в адресной книге выведите YES (заглавными буквами), если он совпадает с тем телефонным номером, который Вася хочет добавить в адресную книгу или NO (заглавными буквами) в противном случае.

Примеры
Входные данные
8(495)430-23-97
+7-4-9-5-43-023-97
4-3-0-2-3-9-7
8-495-430
Выходные данные
YES
YES
NO
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

У Пети имеется игровое поле размером \(3\times3\), заполненное числами от 1 до 9. В начале игры он может поставить фишку в любую клетку поля. На каждом шаге игры разрешается перемещать фишку в любую соседнюю по стороне клетку, но не разрешается посещать одну и ту же клетку дважды. Петя внимательно ведет протокол игры, записывая в него цифры в том порядке, в котором фишка посещала клетки. Пете стало интересно, какое максимальное число он может получить в протоколе. Помогите ему ответить на этот вопрос.

Входные данные

Входной файл содержит описание поля — 3 строки по 3 целых числа, разделенных пробелами. Гарантируется, что все девять чисел различны и лежат в диапазоне от 1 до 9.

Выходные данные

Выведите одно целое число — максимальное число, которое могло получиться в протоколе при игре на данном поле.

Ответ можно выводить не в виде числа, а в виде строки или в виде последовательности отдельных цифр (но не разделяя их пробелами).

Пример

Ввод Вывод
1 2 3
4 5 6
7 8 9
987456321
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Жомарт любит наблюдать за звездами и создавать из них различные геометрические фигуры. Небо предоставляется в виде декартовой системы координат, а звезды на ней точками. На этот раз Жомарта интересует вопрос, сколько различных прямоугольных треугольников, у которого катеты параллельны осям координат, можно составить с помощью звезд на небе.

Формат входного файла

В первой строке задается \(N\) — количество звезд на небе (3 \(\le\)  \(N\) \(\le\) 300000). В каждой из следу- ющих \(N\) строк заданы целые \(X\), \(Y\) (|\(X\), \(Y\)| \(\le\) \(10^9\)) — координаты соответствующей звезды.

Формат выходного файла

Выведите ответ к задаче.

Примеры
Входные данные
3
0 0
1 0
0 1
Выходные данные
1
Входные данные
4
0 0
1 0
0 1
1 1
Выходные данные
4
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Имеется 4-мерный массив X, каждый индекс которого может принимать значения от 1 до N. Вы должны построить новый 4-мерный массив Y , элементы которого должны принимать следующие значения: \(Y\) [\(i_1\), \(i_2\), \(i_3\), \(i_4\)] = min(\(X\)[\(j_1\), \(j_2\), \(j_3\), \(j_4\)]), где 1 \(\le\) \(i_k\) \(\le\) \(N\) − \(M\) + 1, \(i_k\) \(\le\) \(j_k\) \(\le\) \(i_k\) + \(M\) − 1, а \(M\) -  заданное число.

Входные данные

В первой строке входного файла задаются \(N\) и \(M\) (\(1\) \(\le\) \(M\) \(\le\) \(N\)). Остальные строки файла содержат элементы массива \(X\). Количество элементов не будет превышать 1500000 и сами они будут целыми числами, не превышающими по абсолютному значению \(10^9\). Они расположены в таком порядке, что считать их можно с помощью псевдокода:

for i = 1 to N:
for j = 1 to N:
for k = 1 to N:
for l = 1 to N:
read X[i, j, k, l]
Выходные данные

Выведите искомый массив \(Y\) в том же формате, в котором был дан массив \(X\).

Примеры
Входные данные
1 1
1
Выходные данные
1
Входные данные
3 2
3 1 4 -4 0 4 0 0 -3 0 -2 -5 5 3 5 -4 4 -3 -5 -4 -4 5 -1 0 -3 -2 -1 2 -5 -5 -1 1 1 -4 3 5 3 -3 -3 3 0 1 4 -1 -2 3 -2 5 4 -1 -5 3 -4 0 -3 -1 3 -1 4 4 -1 -5 -3 4 -4 5 1 5 -4 3 2 2 -2 -2 4 2 -4 -3 1 3 1
Выходные данные
-5 -5 -4 -3 -5 -5 -4 -5 -5 -5 -5 -5 -4 -5 -4 -5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Дана сетка с \(N\) + 1 рядами и \(M\) + 1 столбцами. Черепаха находится на клетке (0, 0) и хочет попасть в клетку (\(N\), \(M\)). Черепаха может идти только вверх или вправо. На сетке в K клетках находятся ловушки. Если черепаха пойдет в одну из этих клеток, то она перевернется. У черепашки есть силы для того, чтобы встать не более чем \(T\) раз. Посчитайте, сколькими различными путями черепаха может попасть в клетку (\(N\), \(M\)). Так как это число может быть очень большим, выведите остаток от его деления на \(Z\).

Входные данные

В первой строке входного файла задается 5 целых чисел: \(N\), \(M\), \(K\), \(T\) и \(Z\) (\(1\) \(\le\) \(N\),\(M\) \(\le\) 300000, 0 \(\le\) \(K\), \(T\) \(\le\) 20, 1 \(\le\) \(Z\) \(\le\) \(10^9\)). В каждой из следующих \(K\) строк расположены координаты соответствующей клетки с ловушкой \(X\), \(Y\) (0 \(\le\) \(X\) \(\le\) \(N\), 0 \(\le\) \(Y\) \(\le\) \(M\)). Гарантируется, что все клетки с ловушками различные и в клетках (0, 0) и (\(N\), \(M\)) ловушек нет.

Выходные данные

Выведите требуемое число.

Примеры
Входные данные
1 1 1 0 100
0 1
Выходные данные
1
Входные данные
2 2 0 0 10
Выходные данные
6

Страница: << 123 124 125 126 127 128 129 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест