---> 405 задач <---
Страница: << 19 20 21 22 23 24 25 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

В пространстве с прямоугольной системой координат находятся два куба. Про них известно следующее:

  • сторона каждого куба равна 2,
  • центр (т.е. центр симметрии) каждого куба совпадает с началом данной системы координат,
  • координаты вершин >первого куба A1A2A3A4A5A6A7A8 следующие: A1(1, 1, 1), A2(1, –1, 1), A3(–1, –1, 1), A4(–1, 1, 1), A5(1, 1, –1), A6(1, –1, –1), A7(–1, –1, –1), A8(–1, 1, –1),
  • вершины второго куба B1B2B3B4B5B6B7B8 пронумерованы так, что путем поворота кубы можно совместить, и при этом совместятся соответствующие их вершины (A1 и B1, A2 и B2, … , A8 и B8)
  • координаты вершин второго куба даны во входном файле.

Требуется найти объем пересечения (т.е. общей части) этих кубов.

Входные данные

Во входном файле записаны 8 троек действительных чисел – координаты вершин второго куба B1B2B3B4B5B6B7B8.

Выходные данные

В выходной файл выведите одно число – искомый объем пересечения кубов. Ответ не должен отличаться от верного более чем на 0.00001.

Примеры
Входные данные
1.0000000000 -1.0000000000 1.0000000000 
1.0000000000 -1.0000000000 -1.0000000000 
-1.0000000000 -1.0000000000 -1.0000000000 
-1.0000000000 -1.0000000000 1.0000000000 
1.0000000000 1.0000000000 1.0000000000 
1.0000000000 1.0000000000 -1.0000000000 
-1.0000000000 1.0000000000 -1.0000000000 
-1.0000000000 1.0000000000 1.0000000000 
Выходные данные
8.00000000000000000000
Входные данные
1.4142135623730950488016887242097 0 1
0 -1.4142135623730950488016887242097 1
-1.4142135623730950488016887242097 0 1
0 1.4142135623730950488016887242097 1
1.4142135623730950488016887242097 0 -1
0 -1.4142135623730950488016887242097 -1
-1.4142135623730950488016887242097 0 -1
0 1.4142135623730950488016887242097 -1
Выходные данные
6.62741699796952078000
ограничение по времени на тест
0.5 second;
ограничение по памяти на тест
64 megabytes

Горнолыжник, готовясь к соревнованиям, нарисовал на бумаге схему горнолыжной трассы для выбора оптимального маршрута спуска. На схеме расположенные на трассе ворота представлены горизонтальными отрезками. Никакая пара ворот не имеет общих точек.

Маршрут должен представлять собой ломаную, начинающуюся в точке старта на вершине горы и заканчивающуюся в точке финиша у ее подножия. Маршрут выбирается таким образом, что y-координата каждой следующей вершины ломаной оказывается строго меньше y-координаты предыдущей вершины. Один из возможных маршрутов представлен на рисунке.

За каждые ворота, через которые не проходит маршрут, лыжнику начисляются штрафные очки. Общий штраф за спуск по маршруту вычисляется как сумма длины маршрута и штрафных очков за непройденные ворота.

Требуется написать программу, которая определяет, какой минимальный общий штраф горнолыжник может получить при прохождении трассы.

Входные данные

В первой строке входного файла задано число N - количество ворот на трассе (0 ≤ N ≤ 500), в следующих двух строках заданы Sx, Sy, Fx, Fy - координаты точек старта и финиша соответственно. В каждой из следующих N строк записаны четыре числа ai, bi, yi, ci - x-координаты левого и правого концов ворот, y-координата ворот и штраф за непрохождение данных ворот (ai < bi, Fy < yi < Sy, ci - целое число, 0 ≤ ci ≤ 10000). Все координаты - целые числа, не превосходящие по модулю 10000.

Выходные данные

В выходной файл выведите наименьший возможный общий штраф за прохождение трассы с точностью не менее 4 знаков после десятичной точки.

Система оценки

Потестовая.

Примеры
Входные данные
4
3 6
3 1
5 7 4 1
4 5 5 10
1 2 4 5
2 5 2 0
Выходные данные
7.8126

Страница: << 19 20 21 22 23 24 25 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест