---> 405 задач <---
Страница: << 28 29 30 31 32 33 34 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Школьнику Васе нравятся числа, которые заканчиваются счастливыми для него цифрами k. Поэтому каждый раз, когда он видит какое-нибудь натуральное число n, он сразу пытается подобрать такое d (d ≥ 2), что число n в системе счисления с основанием d заканчивается как можно большим количеством цифр k.

Требуется написать программу, которая по заданным числам n и k найдет такое d, чтобы число n в системе счисления с основанием d заканчивалось как можно большим количеством цифр k.

Входные данные

Вводятся  два целых десятичных числа n и k (1 ≤ n ≤ 1011; 0 ≤ k ≤ 9).

Выходные данные

Выведите два числа: d — искомое основание системы счисления и l — количество цифр k, которым заканчивается запись числа n в этой системе счисления. Если искомых d несколько, выведите любое из них, не превосходящее 1012 (такое всегда существует).

Примеры

 

 

комментарий

49 1

3 2

4910 = 12113

7 5

3 0

Ни в одной системе счисления 7 не заканчивается на цифру 5

Примеры
Входные данные
4 4
Выходные данные
5 1
Входные данные
9 9
Выходные данные
10 1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Ассоциация Тапкодер организует Всемирное парное соревнование сильнейших программистов. К участию в соревновании допущены первые 2k зарегистрировавшихся участников, которым присвоены номера от 1 до 2k.

Соревнование будет проходить по олимпийской системе. В первом туре первый участник встречается со вторым, третий с четвертым и так далее. В каждой паре победителем становится участник, первым решивший предложенную задачу, при этом ничьих не бывает. Все победители очередного тура и только они являются участниками следующего тура. В каждом туре пары составляются из участников в порядке возрастания присвоенных им номеров. Соревнование продолжается до тех пор, пока не останется один победитель.

Организаторам стало известно, что некоторые пары участников заранее договорились о результате встречи между собой, если такая встреча состоится. Для всех остальных встреч, кроме n договорных, возможен любой исход.

Некоторые m участников соревнования представили свои резюме в ассоциацию Тапкодер с целью поступления на работу. Организаторов интересует, до какого тура может дойти каждый из претендентов при наиболее благоприятном для него стечении обстоятельств. При этом для каждого участника в отдельности считается, что все недоговорные встречи, в том числе те, в которых он не участвует, закончатся так, как ему выгодно, а все состоявшиеся договорные встречи закончатся в соответствии с имеющимися договоренностями.

Требуется написать программу, которая для каждого из претендентов определяет максимальный номер тура, в котором он может участвовать.

Входные данные

В первой строке заданы три целых числа k (1 ≤ k ≤ 60), n (0 ≤ n ≤ 100 000) и m (1 ≤ m ≤ 100 000). В следующих n строках описаны n пар участников, которые договорились между собой о том, что первый из двух участников пары выиграет встречу, если она состоится. Гарантируется, что каждая пара участников присутствует во входных данных не более одного раза, при этом, если задана пара x y, то пары y x быть не может, кроме того, x y. В последней строке перечислены номера участников, желающих работать в Тапкодере, в порядке возрастания их номеров. Все номера претендентов на работу различны.

Выходные данные

Выходные данные должны содержать m целых чисел — максимальные номера туров, до которых могут дойти соответствующие претенденты на работу. Туры нумеруются от 1 до k.

Комментарии к примерам тестов.

1. У каждого из участников есть возможность выйти в финал, так как договорных матчей нет.

2. Если четвертый участник выиграет у третьего, то договорная встреча первого и третьего не состоится, что благоприятно для первого.

3. Первому участнику благоприятно во втором туре играть с третьим, а не с четвертым, в свою очередь, четвертый может выиграть у третьего и также выйти в финал.

Система оценки

Тесты к этой задаче состоят из четырех групп, баллы начисляются только при прохождении всех тестов группы и всех тестов предыдущих групп.

0. Тесты 1–10. k <= 5. Эта группа оценивается в 30 баллов.

1. Тесты 11–14. k <= 20. Эта группа оценивается в 20 баллов.

2. Тесты 15–18. k <= 30. Эта группа оценивается в 20 баллов.

3. Тесты 19–23. Дополнительные ограничения отсутствуют. Эта группа оценивается в 30 баллов.

Примеры
Входные данные
2 0 3
1 3 4
Выходные данные
2 2 2
Входные данные
3 1 1
3 1
1
Выходные данные
3
Входные данные
3 3 4
1 2
1 3
4 1
1 2 3 4
Выходные данные
3 1 2 3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

К предстоящей олимпиаде в Сочи требуется возвести N олимпийских объектов. Процесс строительства каждого объекта определяется освоением выделяемых на него денежных средств.

В строительстве объектов готовы участвовать K фирм. Фирмы имеют разные строительные мощности, выраженные в количестве денежных средств, которые фирма может осваивать в единицу времени.

В каждый момент времени фирма может осуществлять работы только на одном объекте. В строительстве одного объекта не могут одновременно участвовать несколько фирм. В любой момент времени любой объект может быть передан для продолжения строительства любой фирме.

Администрация строительства олимпийских объектов заинтересована в скорейшем освоении денежных средств, поэтому хочет составить такой график работ, при следовании которому строительство будет завершено в кратчайшие сроки. В графике будет указано время, в течение которого тот или иной объект будет строиться какой-то фирмой.

Напишите программу, результаты работы которой позволят администрации построить требуемый график.

Входные данные

Первая строка содержит целое число N — количество объектов (1   50). Во второй строке содержатся разделенные пробелами целочисленные значения S1S2, S3, …, SN объемов денежных средств, выделяемых для строительства каждого из объектов. Числа Si выражены в тысячах рублей, положительные и не превышают 1000.

В третьей строке находится целое число K — количество строительных фирм (1   50). Четвертая строка содержит разделенные пробелами целочисленные значения мощностей каждой из фирм V1, V2, V3, …, VK в тыс.руб/час. Числа Vj положительные и не превышают 1000.

Выходные данные

Первая строка содержит действительное число T — время в часах окончания всех работ, считая с начала строительства, выведенное не менее чем с тремя точными знаками после запятой. Далее в каждой строке содержатся разделенные пробелами три числа: t, i, j, где действительное число t — время от начала строительства в часах, в которое j-я фирма приступает к строительным работам на i-м объекте.

Значения времен необходимо выводить с максимально возможной точностью.

Строки должны быть отсортированы по неубыванию t.

Примеры
Входные данные
2
24 20
2
3 2
Выходные данные
8.800
0 1 1
0 2 2
6.4000000 1 2
6.4000000 2 1
Входные данные
3
100 100 100
4
5 5 10 10
Выходные данные
12.00000
0 1 3
0 2 4
0 3 1
4 2 2
4 3 4
8 1 1
8 3 4
8 2 3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы вещественные числа. Требуется определить, возможно ли упорядочить их с помощью стека.

Для транспортирования материалов из цеха А в цех В используется конвейер. Материалы упаковываются в одинаковые контейнеры и размещаются на ленте один за одним в порядке изготовления в цехе А. Каждый контейнер имеет степень срочности обработки в цехе В. Для упорядочивания контейнеров по степени срочности используют накопитель, который находится в конце конвейера перед входом в цех В. Накопитель работает пошагово, на каждом шаге возможны следующие действия:

накопитель перемещает первый контейнер из ленты в цех В;

накопитель перемещает первый контейнер из строки в склад (в складе каждый следующий контейнер помещается на предыдущий);

накопитель перемещает верхний контейнер из склада в цех В.

Напишите программу, которая по последовательности контейнеров определит, можно ли упорядочить их по степени срочности пользуясь описанным накопителем.

Входные данные

Входной файл в первой строке содержит количество тестов N. Далее следует N строк, каждый из которых описывает отдельный тест и содержит целое число K (1 K 10000) — количество контейнеров в последовательности и K действительных чисел — степеней срочности контейнеров в порядке их поступления из цеха А (меньшим числам соответствует большая степень срочности).

Выходные данные

Каждая строка выходного файла должна содержать ответ для одного теста. Необходимо вывести 1, если необходимое упорядочивание возможно, или 0 в противном случае.

Примеры
Входные данные
2
2 2.9 2.1
3 5.6 9.0 2.0
Выходные данные
1
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Дана последовательность, состоящая из 2N натуральных чисел. Известно, что все числа этой последовательности можно разбить на пары таким образом, что сумма чисел во всех парах будет одинаковой. Например, числа последовательности 99, 23, 77, 1 можно разбить на пары 1+99=77+23.

Напишите программу, которая по такой последовательности определяет, можно ли эту последовательность разбить на пары таким образом, чтобы произведение чисел во всех парах было одинаковым.

Входные данные

Файл содержит данные нескольких тестов. Первая строка содержит натуральное число - количество тестов в файле. Первая строка каждого теста содержит число 2N — количество чисел в последовательности. В каждой из последующих 2N строчек содержится целое число от 1 до 109 — элементы последовательности (1N 50000)

Выходные данные

Файл должен содержать ответ на каждый из тестов в отдельной строке. Ответом на тест является символ 1, если входную последовательность можно разбить на пары, произведения в которых были бы одинаковыми, и 0 в противном случае.

Примеры
Входные данные
2
4
99
23
77
1
2
1
10101
Выходные данные
0
1

Страница: << 28 29 30 31 32 33 34 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест