---> 405 задач <---
Страница: << 49 50 51 52 53 54 55 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Многие системы форматирования текста, например TEX или Wiki, используют для разбиения текста на абзацы пустые строки. Текст представляет собой последовательность слов, разделенных пробелами, символами перевода строк и следующими знаками препинания: «, «, «, «, «, « и «’» (ASCII коды 44, 46, 63, 33, 45, 58, 39). Каждое слово в тексте состоит из заглавных и прописных букв латинского алфавита и цифр. Текст может состоять из нескольких абзацев. В этом случае соседние абзацы разделяются одной или несколькими пустыми строками. Перед первым абзацем и после последнего абзаца также могут идти одна или несколько пустых строк.

Дальнейшее использование исходного текста предполагает его форматирование, которое осуществляется следующим образом. Каждый абзац должен быть разбит на строки, каждая из которых имеет длину не больше \(w\). Первая строка каждого абзаца должна начинаться с отступа, состоящего из \(b\) пробелов. Слова внутри одной строки должны быть разделены ровно одним пробелом. Если после слова идет один или несколько знаков препинания, они должны следовать сразу после слова без дополнительных пробелов. Если очередное слово вместе со следующими за ним знаками препинания помещается на текущую строку, оно размещается на текущей строке. В противном случае, с этого слова начинается новая строка. В отформатированном тексте абзацы не должны разделяться пустыми строками. В конце строк не должно быть пробелов.

Требуется написать программу, которая по заданным числам \(w\) и \(b\) и заданному тексту выводит текст, отформатированный описанным выше образом.

Входные данные

Первая строка входного файла содержит два целых числа: \(w\) и \(b\) (\(5 \le w \le 100\), \(1 \le b \le 8\), \(b \lt w\)).

Затем следует одна или более строк, содержащих заданный текст. Длина слова в тексте вместе со следующими за ними знаками препинания не превышает \(w\), а длина первого слова любого абзаца вместе со следующими за ним знаками препинания не превышает \((w - b)\).

Название входного файла: formatting.in

Название выходного файла: formatting.out

Размер входного файла не превышает 100 Кбайт. Длина каждой строки во входном файле не превышает 250.

Выходные данные

Выходной файл должен содержать заданный текст, отформатированный в соответствии с приведенными в условии задачи правилами.

Примечание

Правильные решения для тестов, в которых заданный текст состоит из одного абзаца и входной файл не содержит пустых строк, будут оцениваться из 30 баллов.

Правильные решения для тестов, в которых соседние слова разделены ровно одним пробелом и все знаки препинания следуют сразу за словами и не отделены от них пробелами или символами перевода строк, будут оцениваться из 30 баллов.

Примеры
Входные данные
20 4
Yesterday, 
All my troubles seemed so far away, 
Now it looks as though they're here to stay, 
Oh, I believe in yesterday. 

Suddenly, 
I'm not half the man I used to be, 
There's a shadow hanging over me, 
Oh, yesterday  came suddenly...
Выходные данные
    Yesterday, All
my troubles seemed
so far away, Now it
looks as though
they' re here to
stay, Oh, I believe
in yesterday.
    Suddenly, I' m
not half the man I
used to be, There' s
a shadow hanging
over me, Oh,
yesterday came
suddenly...
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Отделу космических исследований поступило задание сфотографировать из космоса \(n\) объектов в заданной области. Область имеет форму квадрата размером \(50\times 50\) километров. Если разделить ее на квадраты размером \(1\times 1\) километр, то интересующие отдел объекты окажутся в центрах некоторых единичных квадратов.

Введем систему координат, направив ось OX с запада на восток и ось OY с юга на север. Тогда каждому единичному квадрату будут сопоставлены координаты в диапазоне от 1 до 50, как показано на рисунке ниже.

Для космической съемки используется специальный фотоаппарат высокого разрешения, установленный на космическом спутнике. Фотоаппарат может делать снимки квадратных участков земной поверхности размером \(k\times k\) километров. Исходно аппарат наведен на юго-западный угол заданной области, то есть, если сделать снимок, на нем будут видны единичные квадраты с координатами \(x\) и \(y\) от \(1\) до \(k\) километров.

С помощью специальных двигателей можно изменять орбиту спутника, что приводит к изменению участка съемки. За один день орбиту спутника можно изменить таким образом, что участок съемки сместится либо на один километр на запад, либо на один километр на восток, либо на один километр на север. Переместить участок съемки на юг невозможно. Непосредственно между перемещениями спутника можно сделать снимок, временем съемки можно пренебречь.

Руководство отдела заинтересовалось вопросом: за какое минимальное количество дней можно сделать снимки всех объектов заданной области.

Требуется написать программу, которая по заданному расположению объектов и размеру снимка \(k\) определит минимальное время, за которое можно сделать снимки всех объектов заданной области.

Входные данные

Первая строка входного файла содержит два целых числа: \(n\) и \(k\) (\(1 \le n \le 1000\), \(1 \le k \le 5\)).

Следующие \(n\) строк содержат по два целых числа: \(x_i\) и \(y_i\) — координаты объектов в заданной области (\(1 \le x_i, y_i \le 50\)).

Выходные данные

В выходном файле должно содержаться одно целое число: минимальное количество дней, которое требуется для получения снимков всех объектов в заданной области.

Примечание

В первом примере возможна следующая последовательность действий: сделать снимок, 9 раз сместиться на восток, сместиться на север, сделать снимок, 9 раз сместиться на запад, сместиться на север, сделать снимок, 9 раз сместиться на восток, сместиться на север, сделать снимок. Всего требуется 30 перемещений участка съемки.

Во втором примере объекты расположены там же, но размер снимка больше, поэтому можно действовать так: сделать снимок, сместиться на север, сделать снимок, 8 раз сместиться на восток, сделать снимок, сместиться на север, сделать снимок. Всего требуется лишь 10 перемещений участка съемки.

В третьем примере перемещать участок съемки не требуется, можно просто сделать снимок.

Четвертый пример соответствует приведенному выше рисунку.

Правильные решения для тестов, в которых \(k = 1\), будут оцениваться в 30 баллов.

Правильные решения для тестов, в которых \(k \gt 1\) и \(1 \lt n \le 15\), будут оцениваться так же в 30 баллов.

Примеры
Входные данные
4 1
1 1
10 2
1 3
10 4
Выходные данные
30
Входные данные
4 2
1 1
10 2
1 3
10 4
Выходные данные
10
Входные данные
1 1
1 1
Выходные данные
0
Входные данные
3 3
3 3
3 6
6 3
Выходные данные
7
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Параллель восьмых классов написала контрольную работу. В результате ровно A% учащихся получили 5, ровно B% — 4, ровно C% — 3, а остальные D% написали её на 2. Какое минимальное количество школьников должно быть в параллели восьмых классов для того, чтобы могли получиться такие результаты?

Входные данные

Вводятся 4 целых числа от 0 до 100 — A, B, C, D (A + B + C + D = 100).

Выходные данные

Выведите единственное целое положительное число — минимальное возможное количество учащихся в параллели.

Примеры
Входные данные
40 50 5 5
Выходные данные
20

Сегодня в школе Васе рассказывали про числовые промежутки. Каждый из них задаётся парой чисел — своими началом и концом, и информацией о том, включается ли в него каждый из концов. Таким образом, существует четыре типа промежутков:

  • Интервал. Обозначается (x, y), включает в себя все числа z: x < z < y.
  • Полуинервалы. Обозначаются [x, y) и (x, y], включают в себя все такие z, что x ≤ z < y и x < z ≤ y соответственно.
  • Отрезок. Обозначается [x, y] и включает в себя все числа z: x ≤ z ≤ y.
В качестве домашней работы Васе досталось посчитать количество целых чисел в каждом из данных промежутков. Поскольку они ещё не проходили вещественных чисел, \(x\) и \(y\) рациональные: \(x\) = \(a \over b\) , \(y\) = \(c \over d\) (\(a\) и \(c\) целые, \(b\) и \(d\) целые положительные)

Рассмотрим пример: [\(3 \over 2\), 4) В данном случае \(d\) = 1, поэтому вместо \(4 \over 1\) пишут просто 4. В этом множестве содержится два целых числа: 2 и 3, а число 4 не содержится.

Помогите Васе с домашней работой — напишите программу, которая по заданному числовому промежутку посчитает количество целых чисел, содержащихся в нём.

Входные данные

Первым символом идёт открывающаяся квадратная или круглая скобка. Далее записано число x в формате \(a \over b\) либо a, где |a| ≤ 109, 0 < b ≤ 109. После следует запятая и пробел. Потом — число y в таком же формате. Далее — закрывающаяся квадратная или круглая скобка. После неё идёт перевод строки и конец файла.

Гарантируется, что данный числовой промежуток не является пустым (то есть содержит в себе хотя бы одно число, не обязательно целое).

Выходные данные

По заданному числовому промежутку выведите единственное число — количество целых чисел в нём.

Примеры
Входные данные
[3/2, 4)
Выходные данные
2
Входные данные
[-2/4, 5/3]
Выходные данные
2
Входные данные
[-1000, 1000]
Выходные данные
2001
Входные данные
[-2, 4/3]
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Этим летом у бабушки был большой урожай яблок. Она собрала яблоки в корзину и отдала своим \(K\) внукам.

Первый внук взял из корзины половину всех яблок и еще \(a_1\) яблоко (если количество яблок не делилось на два, то результат деления на два он мог округлить как в большую сторону, так и в меньшую). К примеру, если в корзине было 7 яблок и \(a_1 = 1\), то он мог взять либо 4, либо 5, а если было 6 яблок и \(a_1 = 1\), то он взял ровно 4.

Второй внук взял половину от всех оставшихся яблок и ещё \(a_2\) (если яблок было нечетное количество, то он также мог округлить половину как в большую, так и в меньшую сторону). И так далее, \(K\)-ый внук взял половину яблок, оставшихся после \(K - 1\) внука, и ещё \(a_k\). В итоге в корзине ничего не осталось.

Теперь они задумались, насколько же большой урожай был у бабушки. Ни один из них не помнит, делилось ли количество яблок на 2 нацело при его выборе, а если нет, то в какую сторону он округлил половину яблок. Внуков интересует минимальное и максимальное изначальное количество яблок в корзине, при которых могли произойти описанные события.

Входные данные

Сначала вводится целое положительное число \(K\) (\(1 \le K \le 1\,000\)). Далее записано \(K\) целых неотрицательных чисел \(a_1, \dots , a_K\) (\(0 \le a_i \le 1\,000\)).

Выходные данные

Выведите два неотрицательных целых числа без ведущих нулей, каждое в новой строке - минимальное и максимальное возможное количество яблок в корзине соответственно.

Примеры
Входные данные
1
1
Выходные данные
1
3
Входные данные
2
0 1
Выходные данные
1
7

Страница: << 49 50 51 52 53 54 55 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест