---> 70 задач <---
Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Фирма OISAC выпустила новую версию калькулятора. Этот калькулятор берет с пользователя деньги за совершаемые арифметические операции. Стоимость каждой операции в долларах равна 5% от числа, которое является результатом операции.

На этом калькуляторе требуется вычислить сумму N натуральных чисел (числа известны). Нетрудно заметить, что от того, в каком порядке мы будем складывать эти числа, иногда зависит, в какую сумму денег нам обойдется вычисление суммы чисел (тем самым, оказывается нарушен классический принцип «от перестановки мест слагаемых сумма не меняется» ).

Например, пусть нам нужно сложить числа 10, 11, 12 и 13. Тогда если мы сначала сложим 10 и 11 (это обойдется нам в \(1.05), потом результат — с 12 (\)1.65), и затем — с 13 (\(2.3), то всего мы заплатим \)5, если же сначала отдельно сложить 10 и 11 (\(1.05), потом — 12 и 13 (\)1.25) и, наконец, сложить между собой два полученных числа (\(2.3), то в итоге мы заплатим лишь \)4.6.

Напишите программу, которая будет определять, за какую минимальную сумму денег можно найти сумму данных N чисел.

Входные данные

Во входном файле записано число N (2N100000). Далее идет N натуральных чисел, которые нужно сложить, каждое из них не превышает 10000.

Выходные данные

В выходной файл выведите, сколько денег нам потребуется на нахождение суммы этих N чисел. Результат должен быть выведен с двумя знаками после десятичной точки.

Примеры
Входные данные
4
10 11 12 13
Выходные данные
4.60
Входные данные
2
1 1
Выходные данные
0.10
ограничение по времени на тест
0.5 second;
ограничение по памяти на тест
64 megabytes

Горнолыжник, готовясь к соревнованиям, нарисовал на бумаге схему горнолыжной трассы для выбора оптимального маршрута спуска. На схеме расположенные на трассе ворота представлены горизонтальными отрезками. Никакая пара ворот не имеет общих точек.

Маршрут должен представлять собой ломаную, начинающуюся в точке старта на вершине горы и заканчивающуюся в точке финиша у ее подножия. Маршрут выбирается таким образом, что y-координата каждой следующей вершины ломаной оказывается строго меньше y-координаты предыдущей вершины. Один из возможных маршрутов представлен на рисунке.

За каждые ворота, через которые не проходит маршрут, лыжнику начисляются штрафные очки. Общий штраф за спуск по маршруту вычисляется как сумма длины маршрута и штрафных очков за непройденные ворота.

Требуется написать программу, которая определяет, какой минимальный общий штраф горнолыжник может получить при прохождении трассы.

Входные данные

В первой строке входного файла задано число N - количество ворот на трассе (0 ≤ N ≤ 500), в следующих двух строках заданы Sx, Sy, Fx, Fy - координаты точек старта и финиша соответственно. В каждой из следующих N строк записаны четыре числа ai, bi, yi, ci - x-координаты левого и правого концов ворот, y-координата ворот и штраф за непрохождение данных ворот (ai < bi, Fy < yi < Sy, ci - целое число, 0 ≤ ci ≤ 10000). Все координаты - целые числа, не превосходящие по модулю 10000.

Выходные данные

В выходной файл выведите наименьший возможный общий штраф за прохождение трассы с точностью не менее 4 знаков после десятичной точки.

Система оценки

Потестовая.

Примеры
Входные данные
4
3 6
3 1
5 7 4 1
4 5 5 10
1 2 4 5
2 5 2 0
Выходные данные
7.8126
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Чтобы поднять в свой офис на N-м этаже небоскреба новый сейф, Вите опять пришлось прибегнуть к помощи грузчиков. Но за это время система оплаты изменилась. Теперь за подъем по лестнице на один этаж требуется заплатить U рублей, за спуск по лестнице на один этаж — D рублей, за внос в лифт — I рублей, за вынос из лифта — J рублей.

В офисе имеется L лифтов, каждый из которых останавливается лишь на определенных этажах.

Помогите Вите разработать маршрут подъема сейфа с первого этажа, стоимость которого наименьшая.

Входные данные

В первой строке входного файла записаны целые числа N, U, D, I, J, L. Каждая из следующих L строк описывает соответствующий лифт. Она начинается с числа Ki — количества этажей, на которых останавливается i-й лифт, за которым следует Ki натуральных чисел — этажи, на которых останавливается этот лифт (этажи для каждого лифта задаются в возрастающем порядке). 0≤U≤1000, 0≤D≤1000, 0≤I≤1000, 0≤J≤1000, 0≤L≤500, 1≤N≤1000000, 2≤Ki≤1000, K1+K2+…+KL≤100000. Количество этажей в небоскребе не превосходит 1000000.

Выходные данные

В выходной файл выведите одно число — минимальную стоимость подъема сейфа.

Группы тестов:

  • Группа 0 : Тесты из условия (тесты 1-3). 0 баллов.
  • Группа 1 : Количество этажей в доме не превосходит 100 (тесты 4-6). 30 баллов.
  • Группа 2 : Количество этажей в доме не превосходит 1000 (тесты 7-11). 30 баллов.
  • Группа 3 : K1+K2+…+KL≤1000 (тесты 12-32). 20 баллов.
  • Группа 4 : Дополнительных ограничений нет (тесты 33-50). 20 баллов.
Баллы за группу тестов выставляются только при корректной работе программы на всех тестах группы.

Примеры
Входные данные
10 1 1 1 1 1
2 3 7
Выходные данные
7
Входные данные
10 1 1 3 2 1
2 3 7
Выходные данные
9
Входные данные
20 100 0 1 1 2
2 5 7
2 8 17
Выходные данные
804
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

С окраины в центр города каждое утро по одному маршруту едут в трамвае N человек. За долгое время поездок они достаточно хорошо узнали друг друга. Чтобы никому не было обидно, они захотели решить, кто из них и между какими остановками маршрута должен сидеть, а кто должен стоять. Все остановки пронумерованы от 1 до P.

Один из пассажиров оказался знатоком теории математического моделирования. Он предложил рассмотреть значение суммарного удовлетворения пассажиров. Для каждого i-го пассажира он оценил две величины — ai и bi. Если в течение одного переезда между остановками пассажир сидит, то к суммарному удовлетворению прибавляется ai, если же он стоит, то прибавляется bi.

Всего в трамвае M сидячих мест. Вставать и садиться пассажиры могут мгновенно на любой остановке. Кроме того, некоторые пассажиры предпочитают ехать стоя, даже если в трамвае есть свободные места (для них ai < bi).

Требуется написать программу, которая вычисляет значение максимально достижимого суммарного удовлетворения, если для каждого i-го пассажира известны величины ai и bi, а также номера остановок, на которых он садится и выходит из трамвая.

Входные данные

Первая строка входного файла содержит разделенные пробелом три целых числа N, M и P — число пассажиров, число сидячих мест и число остановок на маршруте соответственно (1  N, M,  P  100 000; 2 ≤ P).

Каждая из следующих N строк содержит информацию об очередном пассажире в виде четырех целых чисел ai, bi, ci, di:, где первые два числа определяют вклад в параметр счастья, третье – номер остановки, на которой пассажир садится в трамвай, и последнее – номер остановки, на которой он выходит из трамвая (−106 ≤ ai, bi ≤ 106; 1 ≤ ci < di P).

Выходные данные

В выходной файл необходимо вывести одно целое число — максимальное суммарное удовлетворение, которого могут добиться пассажиры.

Комментарий к примеру тестов

Максимальное суммарное довольство достигается следующим образом:
На первой остановке входят и садятся второй и третий пассажиры;
На второй остановке входят первый и четвертый пассажиры, второй уступает место первому;
На третьей остановке встают и выходят первый и третий пассажиры, второй и четвертый садятся на их места;
На четвертой остановке выходят второй и четвертый пассажиры.

Разбалловка для личной олимпиады

Тест 1 — из условия. Оценивается в 0 баллов.

Тесты 2-31 — числа M, N, P не превосходят 100. Группа тестов оценивается в 60 баллов.

Тесты 32-41 — число P не превосходит 100. Группа тестов оценивается в 20 баллов (вместе с предыдущей группой — 80 баллов).

Тесты 42-51 — дополнительных ограничений нет. Группа тестов оценивается в 20 баллов (вместе с предыдущими группами — 100 баллов).

Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп.

Примеры
Входные данные
4 2 4
10 -10 2 3
-1 -3 1 4
6 -6 1 3
7 4 2 4
Выходные данные
28
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы вещественные числа. Требуется определить, возможно ли упорядочить их с помощью стека.

Для транспортирования материалов из цеха А в цех В используется конвейер. Материалы упаковываются в одинаковые контейнеры и размещаются на ленте один за одним в порядке изготовления в цехе А. Каждый контейнер имеет степень срочности обработки в цехе В. Для упорядочивания контейнеров по степени срочности используют накопитель, который находится в конце конвейера перед входом в цех В. Накопитель работает пошагово, на каждом шаге возможны следующие действия:

накопитель перемещает первый контейнер из ленты в цех В;

накопитель перемещает первый контейнер из строки в склад (в складе каждый следующий контейнер помещается на предыдущий);

накопитель перемещает верхний контейнер из склада в цех В.

Напишите программу, которая по последовательности контейнеров определит, можно ли упорядочить их по степени срочности пользуясь описанным накопителем.

Входные данные

Входной файл в первой строке содержит количество тестов N. Далее следует N строк, каждый из которых описывает отдельный тест и содержит целое число K (1 K 10000) — количество контейнеров в последовательности и K действительных чисел — степеней срочности контейнеров в порядке их поступления из цеха А (меньшим числам соответствует большая степень срочности).

Выходные данные

Каждая строка выходного файла должна содержать ответ для одного теста. Необходимо вывести 1, если необходимое упорядочивание возможно, или 0 в противном случае.

Примеры
Входные данные
2
2 2.9 2.1
3 5.6 9.0 2.0
Выходные данные
1
0

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест