---> 1657 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 175 176 177 178 179 180 181 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

На клетчатом поле \(N\times N\), некоторые клетки которого закрашены, требуется найти размер максимального квадрата, состоящего из закрашенных клеток.

Входные данные

В первой строке входного файла содержится единственное целое число \(N\) (\(1\le N\le 3\,000\)). В каждой из следующих \(N\) строк содержится по \(N\) символов «#» и «.» (соответствующих закрашенным и незакрашенным клеткам соответственно), описывающих таблицу.

Выходные данные

Выведите единственное целое число — максимальный размер полностью закрашенного квадрата.

Система оценки

Каждая программа тестируется на четырёх тестах:

чтобы пройти первый тест, достаточно написать решение, работающее за \(O(N^5)\), чтобы пройти второй, требуется решение уже за \(O(N^4)\), третий — за \(O(N^3)\), четвёртый — за \(O(N^2\log N)\).

За каждый успешно пройденный тест начисляется 25 баллов.

Посылка, набирающая \(x\) баллов по сумме баллов за тесты, считается принятой, если выполняются следующие два условия:

* во-первых, если \(x>25\), должна существовать более ранняя принятая посылка, балл за которую по сумме баллов за тесты равен \(x-25\),

* во-вторых, программа не должна содержать отсечений по \(N\), искусственных замедлений работы и т. п.

Если посылка не принята, через некоторое время после её отправки результат её проверки станет «Дисквалифицирован». Балл за принятую попытку вычисляется как сумма баллов за каждый тест минус 5 баллов за каждую более раннюю дисквалифицированную посылку.

Задача считается решённой, если существует принятая посылка, получившая не менее 100 баллов.

Проще говоря, нужно честно последовательно сдать сначала решение, проходящее только первый тест, затем решение, проходящие первые два теста, затем — все тесты, кроме последнего, и, наконец, решение, проходящее все тесты. При этом допускаются ошибки в программах, уменьшающие балл, но для каждой асимптотики должно быть сдано хотя бы одно своё верное решение.

ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

Когда Петя учился в школе, он часто участвовал в олимпиадах по информатике, математике и физике. Так как он был достаточно способным мальчиком и усердно учился, то на многих из этих олимпиад он получал дипломы. К окончанию школы у него накопилось \(n\) дипломов, причём, как оказалось, все они имели одинаковые размеры: \(w\) — в ширину и \(h\) — в высоту. Сейчас Петя учится в одном из лучших российских университетов и живёт в общежитии со своими одногруппниками. Он решил украсить свою комнату, повесив на одну из стен свои дипломы за школьные олимпиады. Так как к бетонной стене прикрепить дипломы достаточно трудно, то он решил купить специальную доску из пробкового дерева, чтобы прикрепить её к стене, а к ней — дипломы. Для того чтобы эта конструкция выглядела более красиво, Петя хочет, чтобы доска была квадратной и занимала как можно меньше места на стене. Каждый диплом должен быть размещён строго в прямоугольнике размером \(w\) на \(h\). Дипломы запрещается поворачивать на 90 градусов. Прямоугольники, соответствующие различным дипломам, не должны иметь общих внутренних точек. Требуется написать программу, которая вычислит минимальный размер стороны доски, которая потребуется Пете для размещения всех своих дипломов.

Входные данные

Входной файл содержит три целых числа: \(w\), \(h\), \(n\) (\(1\le w,h,n\le 10^9\)).

Выходные данные

В выходной файл необходимо вывести ответ на поставленную задачу.

Иллюстрация к примеру
Примеры
Входные данные
2 3 10
Выходные данные
9
Входные данные
1 1 1
Выходные данные
1
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

Недавно на уроке информатики ученики одного из классов изучили булевы функции. Напомним, что булева функция \(f\) сопоставляет значениям двух булевых аргументов, каждый из которых может быть равен 0 или 1, третье булево значение, называемое результатом. Для учеников, которые выразили желание более подробно изучать эту тему, учительница информатики на дополнительном уроке ввела в рассмотрение понятие цепного вычисления булевой функции \(f\).

Если задана булева функция \(f\) и набор из \(N\) булевых значений \(a_1,a_2,\ldots,a_N\), то результат цепного вычисления этой булевой функции определяется следующим образом:

* если \(N=1\), то он равен \(a_1\);

* если \(N>1\), то он равен результату цепного вычисления булевой функции \(f\) для набора из \((N-1)\) булевого значения \(f(a_1,a_2),a_3,\ldots,a_N\), который получается путём замены первых двух булевых значений в наборе из \(N\) булевых значений на единственное булево значение — результат вычисления функции \(f\) от \(a_1\) и \(a_2\).

Например, если изначально задано три булевых значения: \(a_1=0\), \(a_2=1\), \(a_3=0\), а функция \(f\) — ИЛИ (OR), то после первого шага получается два булевых значения — (0 OR 1) и 0, то есть 1 и 0. После второго (и последнего) шага получается результат цепного вычисления, равный 1, так как 1 OR 0 = 1.

В конце дополнительного урока учительница информатики написала на доске булеву функцию \(f\) и попросила одного из учеников выбрать такие \(N\) булевых значений \(a_i\), чтобы результат цепного вычисления этой функции был равен единице. Более того, она попросила найти такой набор булевых значений, в котором число единиц было бы как можно бо́льшим.

Требуется написать программу, которая решала бы поставленную учительницей задачу.

Входные данные

Первая строка входного файла содержит одно натуральное число \(N\) (\(2\le N\le100\,000\)).

Вторая строка входного файла содержит описание булевой функции в виде четырёх чисел, каждое из которых — ноль или единица. Первое из них есть результат вычисления функции в случае, если оба аргумента — нули, второе — результат в случае, если первый аргумент — ноль, второй — единица, третье — результат в случае, если первый аргумент — единица, второй — ноль, а четвёртый — в случае, если оба аргумента — единицы.

Выходные данные

В выходной файл необходимо вывести строку из \(N\) символов, определяющих искомый набор булевых \(a_i\) с максимально возможным числом единиц. Если ответов несколько, требуется вывести любой из них. Если такого набора не существует, выведите в выходной файл фразу «No solution».

Пояснения к примерам

В первом примере процесс вычисления цепного значения булевой функции \(f\) происходит следующим образом: \(1011\to111\to01\to1\)

Во втором примере вычисление цепного значения булевой функции \(f\) происходит следующим образом: \(11111\to0111\to111\to01\to1\)

В третьем примере получить цепное значение булевой функции \(f\), равное 1, невозможно.

Примеры
Входные данные
4
0110
Выходные данные
1011
Входные данные
5
0100
Выходные данные
11111
Входные данные
6
0000
Выходные данные
No solution
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

К 2110 году город Флэтбург, являясь одним из крупнейших городов мира, не имеет обходной автомагистрали, что является существенным препятствием для его развития как крупнейшего транспортного центра мирового значения. В связи с этим ещё в 2065 году при разработке Генерального плана развития Флэтбурга была определена необходимость строительства кольцевой автомобильной дороги.

В Генеральном плане также были обозначены требования к этой дороге. Она должна соответствовать статусу кольцевой — иметь форму окружности. Кроме этого, четыре крупные достопримечательности Флэтбурга должны быть в одинаковой транспортной доступности от дороги. Это предполагается обеспечить тем, что они будут находиться на равном расстоянии от неё. Расстоянием от точки расположения достопримечательности до дороги называется наименьшее из расстояний от этой точки до некоторой точки, принадлежащей окружности автодороги.

Дирекция по строительству города Флэтбурга, ответственная за постройку кольцевой автодороги, решила привлечь передовых программистов для выбора оптимального плана постройки дороги.

Требуется написать программу, которая вычислит число возможных планов постройки кольцевой автомобильной дороги с соблюдением указанных требований и найдёт такой план, для которого длина дороги будет минимальной. Гарантируется, что хотя бы один план постройки существует.

Входные данные

Входной файл содержит четыре строки. Каждая из них содержит по два целых числа: \(x_i\) и \(y_i\) — координаты места расположения достопримечательности. Первая строка описывает первую достопримечательность, вторая — вторую, третья — третью, четвёртая — четвёртую. Никакие две достопримечательности не находятся в одной точке.

Все числа во входном файле не превосходят 100 по абсолютной величине.

Выходные данные

В первой строке выходного файла требуется вывести число возможных планов постройки кольцевой автомобильной дороги. Если таких планов бесконечно много, необходимо вывести в первой строке выходного файла слово Infinity.

На второй строке требуется вывести координаты центра дороги минимальной длины и её радиус. Если существует несколько разных способов построения дороги минимальной длины, необходимо вывести координаты центра и радиус любой из них. Координаты центра и радиус должны быть выведены с точностью не хуже \(10^{-5}\) и не должны превышать \(10^9\). Гарантируется, что существует хотя бы один план с такими параметрами.

Примеры
Входные данные
0 0
0 1
1 0
2 2
Выходные данные
7
1.5 0.5 1.14412281
Входные данные
0 0
0 1
1 0
1 1
Выходные данные
Infinity
0.5 0.5 0.0
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

С детства Максим был неплохим музыкантом и мастером на все руки. Недавно он самостоятельно сделал несложный перкуссионный музыкальный инструмент — треугольник. Ему нужно узнать, какова частота звука, издаваемого его инструментом.

У Максима есть профессиональный музыкальный тюнер, с помощью которого можно проигрывать ноту с заданной частотой. Максим действует следующим образом: он включает на тюнере ноты с разными частотами и для каждой ноты на слух определяет, ближе или дальше она к издаваемому треугольником звуку, чем предыдущая нота. Поскольку слух у Максима абсолютный, он определяет это всегда абсолютно верно.

Вам Максим показал запись, в которой приведена последовательность частот, выставляемых им на тюнере, и про каждую ноту, начиная со второй, записано — ближе или дальше она к звуку треугольника, чем предыдущая нота. Заранее известно, что частота звучания треугольника Максима составляет не менее 30 герц и не более 4000 герц.

Требуется написать программу, которая определяет, в каком интервале может находиться частота звучания треугольника.

Входные данные

Первая строка входного файла содержит целое число \(n\) — количество нот, которые воспроизводил Максим с помощью тюнера (\(2\le n\le1000\)). Последующие \(n\) строк содержат записи Максима, причём каждая строка содержит две компоненты: вещественное число \(f_i\) — частоту, выставленную на тюнере, в герцах (\(30\le f_i\le4000\)), и слово «closer» или слово «further» для каждой частоты, кроме первой.

Слово «closer» означает, что частота данной ноты ближе к частоте звучания треугольника, чем частота предыдущей ноты, что формально описывается соотношением: \(|f_i-f_{треуг.}|<|f_{i-1}-f_{треуг.}|\).

Слово «further» означает, что частота данной ноты дальше, чем предыдущая.

Если оказалось, что очередная нота так же близка к звуку треугольника, как и предыдущая нота, то Максим мог записать любое из двух указанных выше слов.

Гарантируется, что результаты, полученные Максимом, непротиворечивы.

Выходные данные

В выходной файл необходимо вывести через пробел два вещественных числа — наименьшее и наибольшее возможное значение частоты звучания треугольника, изготовленного Максимом. Числа должны быть выведены с точностью не хуже \(10^{-6}\).

Примеры
Входные данные
3
440
220 closer
300 further
Выходные данные
30.0 260.0
Входные данные
4
554
880 further
440 closer
622 closer
Выходные данные
531.0 660.0

Страница: << 175 176 177 178 179 180 181 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест