---> 405 задач <---
Страница: << 75 76 77 78 79 80 81 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
128 megabytes

Компания тестирует технологию получения антивещества, используемого в качестве топлива в межпланетном звездолёте. Антивещество получается в результате специальных экспериментов в реакторе.

Известно n типов экспериментов, приводящих к получению антивещества. В результате проведения эксперимента i-го типа в выходной контейнер реактора добавляется от li до ri граммов антивещества. Из соображений безопасности запрещается накапливать в контейнере более a граммов антивещества.

Затраты на проведение эксперимента i-го типа составляют ci, а стоимость одного грамма полученного антивещества составляет 109.

Если после проведения экспериментов в контейнере образовалось t граммов антивещества, а суммарные затраты на проведение экспериментов в реакторе составили s, то прибыль определяется по формуле (t·109 - s). Компании необходимо разработать стратегию проведения экспериментов, позволяющую максимизировать прибыль, которую можно гарантированно получить.

В зависимости от результатов предыдущих экспериментов стратегия определяет, эксперимент какого типа следует провести, или решает прекратить дальнейшее выполнение экспериментов. Стратегия позволяет гарантированно получить прибыль x, если при любых результатах проведения экспериментов: во-первых, в контейнере реактора оказывается не более a граммов антивещества, во-вторых, прибыль составит не менее x.

Например, пусть возможен только один тип эксперимента, порождающий от 4 до 6 граммов антивещества, затраты на его проведение равны 10, а вместимость контейнера составляет 17 граммов. Тогда после двукратного проведения эксперимента в контейнере может оказаться от 8 до 12 граммов антивещества. Если получилось 12 граммов, то больше проводить эксперимент нельзя, так как в случае получения 6 граммов антивещества контейнер может переполниться. В остальных случаях можно провести эксперимент в третий раз и получить от 12 до 17 граммов антивещества. В худшем случае придётся провести эксперимент трижды, затратив в сумме 30, прибыль составит (12·109 - 30) = 11 999 999 970.

Требуется написать программу, которая определяет максимальную прибыль x, которую гарантированно можно получить.

Входные данные

Первая строка входных данных содержит два целых числа: n — количество типов экспериментов и a — максимально допустимое количество антивещества в контейнере (1 ≤ n ≤ 100, 1 ≤ a ≤ 2 000 000).

Следующие n строк содержат по три целых числа li, ri и ci — минимальное и максимальное количество антивещества, получаемое в результате эксперимента типа i, и затраты на эксперимент этого типа, соответственно (1 ≤ li ≤ ri ≤ a, 1 ≤ ci ≤ 100).

Выходные данные

Выходные данные должны содержать одно целое число — максимальную прибыль x, которую гарантированно можно получить.

Примеры
Входные данные
1 17
4 6 10
Выходные данные
11999999970
Входные данные
2 11
2 2 100
3 5 5
Выходные данные
9999999890
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Вы наверняка слышали легенду о Короле Артуре и Рыцарях Круглого Стола. Практически все версии этой истории указывают на то, что круглость Круглого Стола тесно связана с верой Артура в равенство среди рыцарей. Это ложь! На самом деле выбор Артура касательно формы стола вызван его детской травмой.

В реальности Артур был принужден убирать и мыть квадратные столы с юного возраста после того как на них играли в бирюльки. После соревнований по этой игре обычно на столе остается множество палочек, не касающихся друг друга. В духе соревнования, организаторы установили свод строгих правил для уборщиков. Точнее, палочки со стола должны быть убраны одна за другой путем их сдвига к ближайшему к уборщику краю стола. Они не должны вращаться и касаться других палочек в процессе перемещения.

В этой задаче представим стол на координатной плоскости как квадрат с противоположными вершинами в точках (0, 0) и (10000, 10000), где палочкам соответствуют прямые отрезки, лежащие внутри квадрата. Предположим, что Артур сидит у края стола, прилежащего к оси X. Тогда уборка палочек со стола сводится к передвижению их к оси X, покуда они не упадут со стола. Ваша задача - определить порядок уборки палочек со стола, который соответствует условиям из предыдущего абзаца.

Входные данные

Первая строка содержит единственное целое число N ( 1 ≤ N ≤ 5000 ) - количество палочек на столе. Каждая из следующих N строк содержит 4 целых числа x 1 , y 1 , x 2 , y 2 ( 0 ≤ x 1 , y 1 , x 2 , y 2 ≤ 10000 ), обозначающих крайние точки палочек.

Выходные данные

В единственной строке выведите N целых чисел - номера палочек в том порядке, в котором они должны быть убраны со стола. Если существует несколько решений, выведите любое из них.

Примеры
Входные данные
4
1 3 2 2
1 1 3 2
2 4 7 3
3 3 5 3
Выходные данные
2 4 1 3 
Входные данные
4
0 0 1 1
1 2 0 3
2 2 3 3
4 0 3 1
Выходные данные
4 3 1 2 
Входные данные
3
4 6 5 5
2 1 15 1
3 2 8 7
Выходные данные
2 3 1 
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Известно, что в солнечной системе есть 8 планет и один планетоид. Мало кто знает, что ещё есть секретная планета, населенная медведями. Именно туда ассоциация Savez отправляет бравого генерала Хенрика для изучения медведей. Выяснилось, что медведи умеют телепортироваться. Расчётливый генерал Хедрик решил завербовать их в свою армию.

У одного медведя есть N строк (обозначим i -ю из них x i ). Исследования показывают, что количество раз, которое может телепортироваться медведь равно длине наибольшей подпоследовательности этих строк, удовлетворяющей такому правилу: строки x i и x j ( i < j ) могут принадлежать одной такой последовательности, если x i является и префиксом, и суффиксом x j .

Помогите уставшему от долгого полёта генералу Хендрику определить, сколько телепортаций сможет сделать данный медведь.

Входные данные

В первой строке содержится одно целое число N – количество строк, которые есть у медведя. В последующих N строках содержатся сами эти строки. Входной файл содержит не более двух миллионов символов.

Выходные данные

Выведите одно число – ответ на вопрос любопытного генерала Хендрика.

Примечание

В первом примере наибольшая последовательность A -> AA -> AAA В третьем примере наибольшая последовательность A -> A -> A или B -> B -> B

Примеры
Входные данные
5
A
B
AA
BBB
AAA
Выходные данные
3
Входные данные
5
A
ABA
BBB
ABABA
AAAAAB
Выходные данные
3
Входные данные
6
A
B
A
B
A
B
Выходные данные
3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В далекой стране есть N городов. Был избран новый премьер-министр. В настоящее время в этой стране нет ни одной дороги, поэтому премьер-министр решил модернизировать страну, соединив некоторые города с двусторонними автострадами в транспортные сети. Два города будут расположены в одной и той же сети, если можно добраться до одного города от другого, используя недавно построенные дороги. Каждый город будет расположен в какой-то сети. Каждая сеть состоит из одного или нескольких городов.

Города представлены в виде точек в двумерной системе координат. Дорога между двумя городами представлена ​​в виде отрезка, соединяющего две точки, в которых расположены города. Длина дороги равна длине отрезка в километрах.

В настоящее время страна переживает экономический спад, поэтому премьер-министр решил, что из-за отсутствия бюджета они не будут строить дороги длиннее, чем D километров. Кроме того, премьер-министр радуется мелочам, поэтому он будет счастлив, если по крайней мере в одной сети будет существовать непустое подмножество городов (оно может включать все города в сети), где общая сумма жителей делится на К . Например, если K = 4 и есть сеть с городами, в которых есть 3 , 5 , 7 жителей соответственно, премьер-министр будет счастлив, потому что сумма жителей в первых двух городах равна 8 .

Помогите премьер-министру сократить расходы, определив минимальный уровень D , необходимый для того чтобы премьер-министр мог строить дороги и одновременно быть счастливым.

Входные данные

Первая строка ввода содержит целые числа N и K (1 ≤ N ≤ 50000, 1 ≤ K ≤ 30) . Каждая из следующих N строк содержит три целых числа x i ; y i ; k i (0 ≤ x i , y i , k i ≤ 100000000) , которые представляют координату x города, координату y и количество жителей в этом городе, соответственно. На входных данных не будет двух городов с одинаковыми координатами. Кроме того, не будет ни одного города, в котором число жителей делится на К .

Выходные данные

Первая и единственная строка вывода должна содержать минимальную D с точностью до 3 -х знаков после запятой, такую, что можно строить дороги с условием, что премьер-министр будет счастлив. Входные данные будут такими, чтобы всегда было решение.

Примечание

Объяснение первого примера: единственный способ удержать премьер-министра в счастливом настроение - все города должны находятся в одном округе. Минимальный D , для которого это возможно, равен 1.414 .

Объяснение второго примера: премьер-министр будет рад, если первые 5 городов находятся в одном округе. Если D = 5.657 , премьер-министр может соединить города 1, 2, 3, 5 с городом 4 . В этом случае сумма жителей в городах 1, 2, 3, 4, 5 составит 11 , что делится на 11 , Поэтому премьер-министр будет счастлив.

Примеры
Входные данные
3 3
0 4 4
1 5 1
2 6 1
Выходные данные
1.414
Входные данные
6 11
0 0 1
0 1 2
1 0 3
1 1 4
5 5 1
20 20 10
Выходные данные
5.657
Входные данные
6 5
20 20 9
0 0 3
0 1 1
10 0 1
10 1 6
12 0 3
Выходные данные
2.000
#113567
  
Источники: [ Личные олимпиады, COCI, COCI 2015-2016, Раунд 3, Хорватские ученые ]
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Ученые в тайной химической лаборатории в Хорватии изучают химические связи в недавно обнаруженном веществе инопланетного происхождения. Имеющаяся в распоряжении ученых порция вещества состоит из N молекул, соединенных между собой N - 1 ковалентными связями, и все молекулы объединены этими связями (не обязательно напрямую) в единую сеть.

Так как вещество нестабильное, в каждой молекуле регулярно возникают импульсы, перемещающиеся по веществу через существующие связи в обоих направлениях. Ученые собираются стабилизировать вещество, направив ковалентные связи (то есть, дав импульсам возможность путешествовать по ним между молекулами лишь в одном направлении). Показатель нестабильности вещества определяется длиной максимального пути, который может пройти импульс в нем, и ученые хотят сделать эту величину как можно меньше.

Помогите ученым создать вещество с минимальным показателем нестабильности, указав необходимое направление ковалентных связей.

Входные данные

Первая строка содержит одно целое число N ( 2 ≤ N ≤ 100000 ). Каждая из последующих N - 1 строк содержит по два целых числа a i и b i ( 1 ≤ a i , b i N ), которые показывают что молекулы с номерами a i и b i соединены ковалентной связью.

Выходные данные

Выведите N - 1 строку, каждая из которых должна содержать 1 если ковалентная связь должна быть направлена от a i к b i или 0 в противном случае.

Примечание

Решения, в которых N ≤ 20 , будут оцениваться в 30 баллов.

Примеры
Входные данные
3
1 2
2 3
Выходные данные
0
1
Входные данные
4
2 1
1 3
4 1
Выходные данные
1
0
1

Страница: << 75 76 77 78 79 80 81 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест