---> 31 задач <---
Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На координатной плоскости расположены равнобедренный прямоугольный треугольник ABC с длиной катета d и точка X. Катеты треугольника лежат на осях координат, а вершины расположены в точках: A (0,0), B (d,0), C (0,d).

Напишите программу, которая определяет взаимное расположение точки X и треугольника. Если точка X расположена внутри или на сторонах треугольника, выведите 0. Если же точка находится вне треугольника, выведите номер ближайшей к ней вершины.

Входные данные

Сначала вводится натуральное число d(не превосходящее 1000), а затем координаты точки X – два целых числа из диапазона от ­–1000 до 1000.

Выходные данные

Если точка лежит внутри, на стороне треугольника или совпадает с одной из вершин, то выведите число 0. Если точка лежит вне треугольника, то выведите номер вершины треугольника, к которой она расположена ближе всего (1 – к вершине A, 2 – к B, 3 – к C). Если точка расположена на одинаковом расстоянии от двух вершин, выведите ту вершину, номер которой меньше.

Комментарии к примерам тестов

1. Точка лежит внутри треугольника.

2. Точка лежит вне треугольника и ближе всего к ней вершина A

3. Точка лежит на равном расстоянии от вершин B и C,в этом случае нужно вывести ту вершину, у которой номер меньше, т.е. выведено должно быть число 2

4. Точка лежит на стороне треугольника.

Примеры
Входные данные
5
1 1
Выходные данные
0
Входные данные
3
-1 -1
Выходные данные
1
Входные данные
4
4 4
Выходные данные
2
Входные данные
4
2 2
Выходные данные
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Петя достаточно давно занимается в математическом кружке, поэтому он уже успел не только правила выполнения простейших операций, но и такое достаточно сложное понятие как симметрия. Для того, чтобы получше изучить симметрию Петя решил начать с наиболее простых геометрических фигур – треугольников. Он скоро понял, что осевой симметрией обладают так называемые равнобедренные треугольники. Поэтому теперь Петя ищет везде такие треугольники.

Напомним, что треугольник называется равнобедренным, если его площадь положительна, и у него есть хотя бы две равные стороны.

Недавно Петя, зайдя в класс, увидел, что на доске нарисовано n точек. Разумеется, он сразу задумался, сколько существует троек из этих точек, которые являются вершинами равнобедренных треугольников.

Требуется написать программу, решающую указанную задачу.

Входные данные

Входной файл содержит целое число n (3 ≤ n ≤ 1500). Каждая из последующих строк содержит по два целых числа – xi и yi – координаты i-ой точки. Координаты точек не превосходят 109 по абсолютной величине. Среди заданных точек нет совпадающих.

Выходные данные

В выходной файл выведите ответ на задачу.

Разбалловка для личной олимпиады

Тесты 1-2 — из условия. Оцениваются в 0 баллов.

Тесты 3-13 — n не превосходит 500. Группа тестов оценивается в 40 баллов.

Тесты 14-28 — дополнительных ограничений нет. Группа тестов оценивается в 60 балла (вместе с предыдущими группами — 100 баллов).

Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 4 балла.

Примеры
Входные данные
3
0 0
2 2
-2 2
Выходные данные
1
Входные данные
4
0 0
1 1
1 0
0 1
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
8 megabytes
X1,Y1), (X2,Y2), (X3,Y3). Найти длину L стороны квадрата минимальной площади, в который можно поместить этот треугольник так, чтобы все вершины треугольника находились внутри квадрата либо на его сторонах.

Составьте программу, которая по координатам вершин треугольника находит длину L стороны квадрата минимальной площади, в который можно поместить этот треугольник. L достаточно найти с точностью 10-4.

Входные данные

Файл содержит в одной строке действительные числа X1 Y1 X2 Y2 X3 Y3, разделенные пробелами, – координаты вершин треугольника (-10000 X1, Y1, X2, Y2, X3, Y3 10000).

Выходные данные

Файл должен содержать одно число - длину L стороны искомого квадрата.

Примеры
Входные данные
0.0 0.0 1.1 0.0 0.0 1.1
Выходные данные
1.100000000
ограничение по времени на тест
0.1 second;
ограничение по памяти на тест
64 megabytes

На плоскости задано такое множество из N многоугольников, что выполняются следующие условия:

  • никакие два многоугольника не имеют общих точек;
  • для каждого i –го многоугольника существует Pi многоугольников, внутри которых он находится, и N-1-Pi многоугольников, которые находятся внутри его, 0 ≤PiN-1.

Напишите программу, которая для каждого многоугольника выдает количество многоугольников, внутри которых он находится.

Входные данные

Первая строка входного файла содержит целое число N — количество многоугольников, 3N100000. Следующие N строк файла описывают N многоугольников. (i+1)–ая строка файла описывает i–ый многоугольник. Первое целое число Ci — количество вершин многоугольника, 3Ci20. Последующие Ci пар чисел — координаты вершин многоугольника в порядке его обхода. Координаты вершин — целые числа, принадлежащие диапазону от -2 000 000 000 до 2 000 000 000.

Выходные данные

Единственная строка выходного файла должна содержать N чисел: i–ое число строки должно быть Piколичество многоугольников, внутри которых находится i–ый многоугольник.

Примеры
Входные данные
3
3 -2 1 8 9 12 1
3 7 5 6 3 7 4
4 4 3 7 7 9 3 1 2
Выходные данные
0 2 1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

 Территория Великой Треугольной Области (ВТО) представляет собой прямоугольный треугольник. Длины его катетов равны M и N государственных единиц длины (ГЕД). Правительство ВТО решило покрыть как можно большую часть территории области квадратными плитами размером 11 ГЕД. Плиты должны плотно прилегать друг к другу и к катетам ВТО. Разрезать плиты нельзя.

Согласно межгосударственным соглашениям, правительство ВТО не имеет права покрыть частью своей плиты чужую территорию. Производитель поставляет плиты только контейнерными партиями — по P плит. Правительство заказывает столько контейнеров, сколько необходимо для реализации проекта.

Заведующий центральным складом, узнав про проект, решил, что его интересует коли­чество плит, которые останутся на складе из последнего контейнера после покрытия территории ВТО.

Напишите программу, которая по длинам катетов ВТО и вместимости контейнера находит количество плит, которые останутся на складе после осуществления проекта.

Входные данные

Единственная строка входного файла содержит три целых числа: M, N (2MN≤2 000 000 000) и P (100P≤10 000).

Выходные данные

Единственная строка выходного файла должна содержать целое число — количество неиспользованных плит из последнего контейнера.

Примеры
Входные данные
4 3 100
Выходные данные
97

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест